| A. | $\sqrt{13}$ | B. | 4 | C. | 13 | D. | 16 |
分析 画出不等式组表示的可行域,根据x2+y2表示平面区域内的点P(x,y)到原点O的距离的平方;
求出最优解,即得目标函数的最大值.
解答
解:画出不等式组$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y+4≥0}\\{y≥2}\end{array}\right.$表示的可行域如图所示,
由x2+y2表示平面区域内的点P(x,y)到原点O的距离的平方;
由$\left\{\begin{array}{l}{x-2y+4=0}\\{y=2}\end{array}\right.$可得A(0,2),
由$\left\{\begin{array}{l}{x-y+1=0}\\{y=2}\end{array}\right.$可得C(1,2),
由$\left\{\begin{array}{l}{x-y+1=0}\\{x-2y+4=0}\end{array}\right.$可得C(2,3),
则取最优解x=2,y=3时,x2+y2取得最大值是22+32=13.
故选:C.
点评 本题考查了不等式组表示平面区域和线性规划的应用问题,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | 8$\sqrt{2}$ | B. | 6$\sqrt{2}$ | C. | 5$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | σ1>σ2>σ3 | B. | σ3>σ2>σ1 | C. | σ1>σ3>σ2 | D. | σ2>σ1>σ3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com