精英家教网 > 高中数学 > 题目详情
12.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y+4≥0}\\{y≥2}\end{array}\right.$,则x2+y2的最大值为(  )
A.$\sqrt{13}$B.4C.13D.16

分析 画出不等式组表示的可行域,根据x2+y2表示平面区域内的点P(x,y)到原点O的距离的平方;
求出最优解,即得目标函数的最大值.

解答 解:画出不等式组$\left\{\begin{array}{l}{x-y+1≤0}\\{x-2y+4≥0}\\{y≥2}\end{array}\right.$表示的可行域如图所示,
由x2+y2表示平面区域内的点P(x,y)到原点O的距离的平方;
由$\left\{\begin{array}{l}{x-2y+4=0}\\{y=2}\end{array}\right.$可得A(0,2),
由$\left\{\begin{array}{l}{x-y+1=0}\\{y=2}\end{array}\right.$可得C(1,2),
由$\left\{\begin{array}{l}{x-y+1=0}\\{x-2y+4=0}\end{array}\right.$可得C(2,3),
则取最优解x=2,y=3时,x2+y2取得最大值是22+32=13.
故选:C.

点评 本题考查了不等式组表示平面区域和线性规划的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知正四棱锥S-ABCD所有棱长为4,E是侧棱SC上一点,且SE=1,过点E垂直于SC的平面截该正四棱锥,则该平面与这个正四棱锥的截面面积为(  )
A.8$\sqrt{2}$B.6$\sqrt{2}$C.5$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow a=(-1,2),\overrightarrow b=(m,1)$,若向量$\overrightarrow a+\overrightarrow b$与$\overrightarrow a$垂直,则m=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如右图是正态分布$N(μ,{σ_1}^2),N(μ,{σ_2}^2),N(μ,{σ_3}^2)({σ_1},{σ_2},{σ_3}>0)$相应的曲线,那么σ1,σ2,σ3的大小关系是(  )
A.σ1>σ2>σ3B.σ3>σ2>σ1C.σ1>σ3>σ2D.σ2>σ1>σ3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-2ax+|x2-1|,a∈R.
(Ⅰ)当a=-1时,解不等式 f(x)≥$\frac{1}{2}$;
(Ⅱ)当a<0时,求 f (x)的最小值 g(a);
(Ⅲ)若函数y=f(x)在[0,+∞)上有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在下列四个图中,每个图的两个变量具有相关关系的图是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设随机变量ξ~B(n,p),且Eξ=2,Dξ=1,则P(1≤ξ≤4)=$\frac{15}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.sin43°cos17°+cos43°sin17°的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求实数λ的取值范围,使不等式|$\frac{1-abλ}{aλ-b}$|>1对满足|a|<1,|b|<1的一切实数a,b恒成立.

查看答案和解析>>

同步练习册答案