精英家教网 > 高中数学 > 题目详情

已知函数
(1)若,求的最大值及此时相应的的值;
(2)在△ABC中,、b、c分别为角A、B、C的对边,若,b =l,,求的值.

(1),此时 .(2)

解析试题分析:解:(Ⅰ)
     2分
.  4分
,∴,   5分
,      即.  7分
,此时,∴.    8分
(Ⅱ)∵, 9分
中,∵
∴    .   10分

由余弦定理得
.                12分
考点:三角函数的性质
点评:解决的关键是对于三角关系式的化简,以及结合其三角函数的性质,以及余弦定理来求解,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C·=-1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,计算 的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数其中
(I)若的值;
(Ⅱ)在(I)的条件下,若函数的图像的相邻两条对称轴之间的距离等于,求函数的解析式;并求最小正实数,使得函数的图像象左平移个单位所对应的函数是偶函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

锐角中,分别为的三边所对的角,, ,
(1)求角
(2)求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,且以为最小正周期.
(1)求
(2)求的解析式;
(3)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,已知
(1)求的值;
(2)若的面积为,求的长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)已知,且,求的值;
(2)求函数的单调递增区间;
(3)若对任意的x∈,不等式恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数的最小正周期为,最小值为,图象过点,(1)求的解析式;(2)求满足的集合.

查看答案和解析>>

同步练习册答案