| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
分析 ①根据正弦定理判断得出sinA=$\frac{5\sqrt{3}}{7}$>1不成立;
②设边长,根据余弦定理得出最大角cosα=$\frac{9{x}^{2}+25{x}^{2}-49{x}^{2}}{30{x}^{2}}$=-$\frac{1}{2}$<0,
③设出角度,根据大边对大角,只需判断最大角为锐角即可.
解答 解:在△ABC中,①若B=60°,a=10,b=7,
由正弦定理 $\frac{b}{sinB}=\frac{a}{sinA}$可知,
$\frac{10}{sinA}=\frac{7}{sin60°}$,
所以sinA=$\frac{5\sqrt{3}}{7}$>1,故错误;
②若三角形的三边的比是3:5:7,
根据题意设三角形三边长为3x,5x,7x,最大角为α,
由余弦定理得:cosα=$\frac{9{x}^{2}+25{x}^{2}-49{x}^{2}}{30{x}^{2}}$=-$\frac{1}{2}$,
则最大角为120°,故正确;
③若△ABC为锐角三角形,且三边长分别为2,3,x,设所对角分别为A,B,C,
则最大角为B或C所对的角,
∴cosB=$\frac{4+{x}^{2}-9}{4x}$>0,得是$\sqrt{5}$<x,
cosC=$\frac{4+9-{x}^{2}}{12}$>0,得x<$\sqrt{13}$.
则x的取值范围是$\sqrt{5}$$<x<\sqrt{13}$,故正确;
故选:C.
点评 考查了正弦定理和余弦定理的应用,根据题意,正确设出边或角.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x→y={(\frac{1}{3})^x}$ | B. | x→y=|x| | C. | x→y=log2x | D. | x→y=x2-2x |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{6}}{6}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{\sqrt{6}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com