精英家教网 > 高中数学 > 题目详情
已知集合p={x|(x-1)(x-3)≤0},Q={x||x|<2},则p∪Q等于(  )
A、[1,2)
B、[1,3]
C、(-2,3]
D、(-2,2)
考点:并集及其运算
专题:集合
分析:利用交集性质求解.
解答: 解:∵p={x|(x-1)(x-3)≤0}={x|1≤x≤3},
Q={x||x|<2}{x|-2<x<2},
∴p∪Q={x|-2<x≤3}=(-2,3].
故选:C.
点评:本题考查并集的求法,解题时要认真审题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
1
|x-1|
,x≠1
1,x=1
,若关于x的方程f(x)2+bf(x)+c=0有三个不同的实数根x1,x2,x3,则
x
2
1
+
x
2
2
+
x
2
3
等于(  )
A、5B、4C、1D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不重合的平面α、β和不重合的直线m、n,给出下列命题:
①m∥n,n?α⇒m∥α;
②m∥n,n?α⇒m与α不相交;
③α∩β=m,n∥α,n∥β⇒n∥m;
④α∥β,m∥β,m?α⇒m∥α;
⑤m∥α,n∥β,m∥n⇒α∥β;
⑥m?α,n?β,α⊥β⇒m⊥n;
⑦m⊥α,n⊥β,α与β相交⇒m与n相交;
⑧m⊥n,n?β,m?β⇒m⊥β;
⑨α⊥β,a?α,b?β,b⊥a⇒b⊥α.
其中正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x|
x-1
x+1
<0},B={x||x-b|<a},若“a=1”是“A∩B≠∅”的充分条件,则b的取值范围是(  )
A、-2≤b<0
B、0<b≤2
C、-3<b<-1
D、-1≤b<2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+y=a与圆x2+y2=4交于两点A、B,且
OA
OB
=0,其中O为坐标原点,则实数a的值为(  )
A、2
B、±2
C、-2
D、±
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U={1,3,5,7,9,11},M={3,5,9},N={7,9},则集合{1,11}=(  )
A、M∪N
B、M∩N
C、∁U(M∪N)
D、∁U(M∩N)

查看答案和解析>>

科目:高中数学 来源: 题型:

某工程机械厂根据市场要求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22400万元,但不超过22500万元,且所筹资金全部用于生产这两种型号的挖掘机,所生产的这两种型号的挖掘机可全部售出,此两种型号挖掘机的生产成本和售价如下表所示:
型号AB
成本(万元/台)200240
售价(万元/台)250300
(1)该厂对这两种型号挖掘机有几种生产方案?
(2)该厂如何生产获得最大利润?
(3)根据市场调查,每台B型挖掘机的售价不会改变,每台A型挖掘机的售价将会提高m万元(m>0),该厂如何生产可以获得最大利润?(注:利润=售价-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

设S(x)=(x-x12+(x-x22+…+(x-xn2,其中x1,x2,x3,…,xn均为已知常数.
(Ⅰ)当x取何值时,S(x)取得极小值;
(Ⅱ)已知当n=2时,S(x)≥
1
2
恒成立,且f(x)=a(x-1)+(x2-x)ex当f(|x1-x2|)≥0恒成立时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ln(x+m)+n的图象在点(1,f(1))处的切线方程是y=x-1,函数g(x)=ax2+bx(a,b∈R,a≠0)在x=2处取极值-2.
(Ⅰ)求函数f(x),g(x)的解析式;
(Ⅱ)若函数y=f(x+1)-g′(x)(其中g′(x)是g(x)的导函数)在区间(t,t+
1
2
)(t>-1)上没有单调性,求实数t的取值范围.

查看答案和解析>>

同步练习册答案