| A. | 存在某个位置,使得$\overrightarrow{AD}$•$\overrightarrow{BC}$=0 | |
| B. | 存在某个位置,使得$\overrightarrow{AB}$•$\overrightarrow{CD}$=0 | |
| C. | 存在某个位置,使得$\overrightarrow{AC}$•$\overrightarrow{BD}$=0 | |
| D. | 对任意位置,$\overrightarrow{AD}$•$\overrightarrow{BC}$,$\overrightarrow{AB}$•$\overrightarrow{CD}$,$\overrightarrow{AC}$•$\overrightarrow{BD}$均不等于零 |
分析 由向量的数量积为0即为向量垂直,运用假设存在某个位置,应用线面垂直的判断和性质,结合矩形的条件,判断可得A正确,B,C,D错误.
解答
解:如图,BE⊥AC,DF⊥AC,
依题意,AB=2,BC=1,
对于A,若存在某个位置,使得直线AD与直线BC垂直,
又BC⊥AB,则BC⊥平面ABD,则BC⊥BD,斜边CD=2>BC=1,存在,故A对;
对于B,若存在某个位置,使得直线AB与直线CD垂直,
则CD⊥平面ABD,CD⊥BD,而CD=2,CB=1,在直角△BCD中,斜边BC<CD矛盾,故B错;
对于C,若存在某个位置,使得直线AC与直线BD垂直,又AC⊥BE,则AC⊥平面BDE,
从而AC⊥DE,这与已知矛盾,故C错;
由前面的分析可得,D错.
综上可得,A正确.
故选:A.
点评 本题考查空间直线和平面的位置关系,主要考查线线垂直和线面垂直的判断和性质,属于中档题和易错题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 不等边三角形 | B. | 三条边不全相等的三角形 | ||
| C. | 锐角三角形 | D. | 钝角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com