分析 (1)利用导函数求解决函数f(x)的单调递减区间;
(2)利用单调性求解函数f(x)的极小值和最大值,求对应x的值.
解答 解:(1)函数f(x)=sinx-cosx+x+1,x∈[0,2π]
则:f′(x)=cosx+sinx+1=$\sqrt{2}$sin(x+$\frac{π}{4}$)+1
令f′(x)=0,即sin(x+$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,
(x∈[0,2π])
解得:x=π或x=$\frac{3}{2}$π.
x,f′(x)以及f(x)变化情况如下表:
| x | (0,π) | π | (π,$\frac{3}{2}$π) | $\frac{3}{2}$π | ($\frac{3}{2}$π,2π) |
| f′(x) | + | 0 | - | 0 | + |
| f(x) | 递增 | π+2 | 递减 | $\frac{3π}{2}$ | 递增 |
点评 本题考查了利用导函数求解函数的单调性和最值问题.属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $arcsin\frac{1}{3}$ | B. | $-\frac{π}{2}-arcsin(-\frac{1}{3})$ | C. | $-π+arcsin(-\frac{1}{3})$ | D. | $-π-arcsin(-\frac{1}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | -$\frac{4}{5}$ | C. | $\frac{4}{5}$ | D. | $±\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向左平移 $\frac{π}{3}$个单位长度 | B. | 向左平移 $\frac{π}{9}$ 个单位长度 | ||
| C. | 向右平移$\frac{π}{3}$ 个单位长度 | D. | 向右平移 $\frac{π}{9}$个单位长度 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 92 | 72 | 93 |
| 物理 | 90 | 63 | 72 | 92 | 91 | 71 | 58 | 91 | 93 | 81 | 77 | 82 | 48 | 91 | 69 | 96 | 61 | 84 | 78 | 93 |
| 优秀 | 不优秀 | 合计 | |
| 优秀 | 6 | 2 | 8 |
| 不优秀 | 2 | 10 | 12 |
| 合计 | 8 | 12 | 20 |
| P(K2≥k0) | 0.1 | 0.05 | 0.01 | 0.005 |
| k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com