精英家教网 > 高中数学 > 题目详情
2.已知抛物线C:y2=4x的焦点是F,过点F的直线与抛物线C相交于P、Q两点,且点Q在第一象限,若$3\overrightarrow{PF}=\overrightarrow{FQ}$,则直线PQ的斜率是(  )
A.$\frac{{\sqrt{3}}}{3}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

分析 过点P,Q分别作抛物线的准线l:x=-1的垂线,垂足分别是P1、Q1,由抛物线的|Q1Q|=|QF|定义可知,|P1P|=|FP|,设|PF|=k(k>0),则|FQ|=3k,在直角△PRQ中求解直线PQ的倾斜角然后求解斜率.

解答 解:过点P,Q分别作抛物线的准线l:x=-1的垂线,垂足分别是P1、Q1
由抛物线的|Q1Q|=|QF|定义可知,|P1P|=|FP|,
设|PF|=k(k>0),$3\overrightarrow{PF}=\overrightarrow{FQ}$,则|FQ|=3k,又过点P作PR⊥Q1Q于点R,
则在直角△PRQ中,|RQ|=2k,|PQ|=4k,所以∠$RPQ=\frac{π}{6}$,
所以直线QP的倾斜角为$\frac{π}{6}$,
所以直线PQ的斜率是$\frac{\sqrt{3}}{3}$,
故选:A.

点评 本题考查抛物线的简单性质的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设各项均为正数的数列{an}的前n项和为Sn,已知a1=1,且(Sn+1+λ)an=(Sn+1)an+1对一切n∈N*都成立.
(1)求a2,a3的值;
(2)求λ的值,使数列{an}是等差数列;
(3)若λ=1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=2$\sqrt{3}$sin(2ωx+$\frac{π}{3}$)-4cos2ωx+3(0<ω<2),且y=f(x)的图象的一条对称轴为x=$\frac{π}{6}$.
(1)求ω的值;
(2)求f(x)的最小值并求此时x的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合M={x∈Z|x<3},N={x|ex>1},则M∩N=(  )
A.{1,2}B.{0,1}C.{1,2,3}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设正项等差数列{an}的前n项和为Sn,且an=$\sqrt{{S}_{2n-1}}$(n∈N*).若对任意正整数n,都有λ>$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{n}{a}_{n+1}}$恒成立,则实数λ的取值范围为$[\frac{1}{2},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列不等式恒成立的个数有(  )
①ab≤($\frac{a+b}{2}$)2≤$\frac{{a}^{2}+{b}^{2}}{2}$(a,b∈R);    
②若实数a>0,则lga+$\frac{1}{lga}$≥2;
③若实数a>1,则a+$\frac{4}{a-1}$≥5.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式$\frac{3x-1}{x-2}$≤0的解集为(  )
A.{x|$\frac{1}{3}$≤x≤2}B.{x|x>2或x≤$\frac{1}{3}$}C.{x|$\frac{1}{3}$≤x<2}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|y=$\sqrt{1-x}$},B={y|y=2x+lna},且A⊆∁RB,则实数a的取值范围是(  )
A.[e,+∞)B.(0,e]C.(-∞,1]D.(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线l1与双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)交于A,B两点,且AB中点M的横坐标为b,过M且与直线l1垂直的直线l2过双曲线C的右焦点,则双曲线的离心率为(  )
A.$\frac{1+\sqrt{5}}{2}$B.$\sqrt{\frac{1+\sqrt{5}}{2}}$C.$\frac{1+\sqrt{3}}{2}$D.$\sqrt{\frac{1+\sqrt{3}}{2}}$

查看答案和解析>>

同步练习册答案