精英家教网 > 高中数学 > 题目详情
13.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60°,PA=PB=AB=2,点N为AB的中点.,
(Ⅰ)证明:AB⊥PC;
(Ⅱ)设点M在线段PD上,且PB∥平面MNC,若平面PAB⊥平面ABCD,求二面角M-NC-P的大小.

分析 (Ⅰ)连结AC,推导出AB⊥NC,AB⊥PN,从而AB⊥平面PNC,由此能证明AB⊥PC.
(Ⅱ)连结BD交NC于F,连结MF,推导出PB∥MF,从而PN⊥AB,进而PN⊥平面ABCD,以N为原点,分别以NB、NC、NP所在的直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角M-NC-P的大小.

解答 证明:(Ⅰ)连结AC,
∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,又点N为AB的中点,
∴AB⊥NC,
又∵PA=PB,N为AB的中点,∴AB⊥PN,
又NC∩PN=N,∴AB⊥平面PNC,
又PC?平面PNC,∴AB⊥PC.
解:(Ⅱ)连结BD交NC于F,连结MF,
∵PB∥平面MNC,PB?平面PBD,平面PBD∩平面MNC=MF,
∴PB∥MF,
由(Ⅰ)知PN⊥AB,
又平面PAB⊥平面ABCD,交线是AB,
∴PN⊥平面ABCD,
以N为原点,分别以NB、NC、NP所在的直线为x,y,z轴,建立空间直角坐标系,
则B(1,0,0),C(0,$\sqrt{3}$,0),N(0,0,0),P(0,0,$\sqrt{3}$),
$\overrightarrow{NC}$=(0,$\sqrt{3}$,0),$\overrightarrow{PB}$=(1,0,-$\sqrt{3}$),
设平面MNC的一个法向量为$\overrightarrow{n}$=(x,y,z),
∴PB∥MF,∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{NC}=\sqrt{3}x=0}\\{\overrightarrow{n}•\overrightarrow{PB}=x-\sqrt{3}y=0}\end{array}\right.$,取x=$\sqrt{3}$,得$\overrightarrow{n}$=($\sqrt{3},0,1$),
由(Ⅰ)知AB⊥平面PNC,则取PNC的一个法向量为$\overrightarrow{m}$=(1,0,0),
cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{\sqrt{3}}{2}$,∴<$\overrightarrow{m},\overrightarrow{n}$>=30°,
∴二面角M-NC-P的大小为30°.

点评 本题考查线线垂直的证明,考查二面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想,考查创新意识、应用意识,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如表:

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则5288用算筹式可表示为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{a{x}^{2}}{{e}^{x}}$,直线y=$\frac{1}{e}$x为曲线y=f(x)的切线.
(1)求实数a的值;
(2)用min{m,n}表示m,n中的较小值,设函数g(x)=min{f(x),x-$\frac{1}{x}$}(x>0),若函数h(x)=g(x)-cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设向量$\overrightarrow a=({-1,2}),\overrightarrow b=({2,1})$,则$\overrightarrow a+\overrightarrow b$与$\vec b$的夹角为(  )
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{{b{\;}^2}}$=1(a>0,b>0)的左、右两焦点分别为F1(-1,0),F2(1,0),椭圆上有一点A与两焦点的连线构成的△AF1F2中,满足∠AF1F2=$\frac{π}{12},∠A{F_2}{F_1}=\frac{7π}{12}$.
(1)求椭圆C的方程;
(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称,设直线BC,CD,OB,OC的斜率分别为k1,k2,k3,k4,且k1•k2=k3•k4,求OB2+OC2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某学校食堂推出两款优惠套餐,甲、乙、丙三位同学选择同一款餐的概率为(  )
A.$\frac{1}{16}$B.$\frac{1}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2$\sqrt{3}sin(wx+\frac{π}{6})coswx$(0<w<2),且f(x)的图象过点$(\frac{5π}{12},\frac{{\sqrt{3}}}{2})$.
(1)求w的值及函数f(x)的最小正周期;
(2)将y=f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数y=g(x)的图象,已知$g(\frac{α}{2})=\frac{{5\sqrt{3}}}{6}$,求$cos(2α-\frac{π}{3})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.向图所示的边长为1的正方形区域内任投一粒豆子,则该豆子落入阴影部分的概率为ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若圆C:x2+y2+2x+2y-7=0关于直线ax+by+4=0对称,由点P(a,b)向圆C作切线,切点为A,则线段PA的最小值为3.

查看答案和解析>>

同步练习册答案