精英家教网 > 高中数学 > 题目详情
某产品的广告费用支出x与销售额y之间有如下的对应数据:
x24568
y3040605070
(1)求回归直线方程,并计算x=6时的残差
e
;(残差公式
ei
=yi-
yi

(2)据此估计广告费用为10时销售收入y的值.
考点:线性回归方程
专题:应用题,概率与统计
分析:(1)先求出横标和纵标的平均数,得到这组数据的样本中心点,利用最小二乘法求出线性回归方程的系数,代入样本中心点求出a的值,写出线性回归方程,计算x=6时的残差
e

(2)由回归直线方程,计算当x=10时,可求对应的销售收入y的值.
解答: 解:(1)
.
x
=
2+4+5+6+8
5
=5
.
y
=
30+40+60+50+70
5
=50
,(2分)
5
i=1
xiyi=2×30+4×40+5×60+6×50+8×70=1380
5
i=1
x
2
i
=4+16+25+36+64=145
,b=
1380×5×5×50
145-5×52
=6.5,(5分)
?
a
=
.
y
-
?
b
.
x
=50-6.5×5=17.5
,(7分)
所以回归直线方程为
?
y
=6.5x+17.5
.(8分)
当x=6时,
?
y
=6.5×6+17.5
=56.5 
.
y
=50,从而
ei
=-6.5             (10分)
(2)x=10时,预报y的值为y=6.5×10+17.5=82.5.(12分)
点评:本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,考查学生的运算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆M:x2+(y-2)2=4,Q是x轴上的动点,QA、QB分别切圆M于A、B两点.
(1)如果|AB|=2
2
,求直线MQ的方程;
(2)求动弦AB的中点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A,B,C的对边分别是a,b,c且cosA=
4
5

(1)求sin(B+C)+cos2A
(2)若b=2,s△ABC=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=-x2+2ax-a在区间[0,1]上有最大值2,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(1)0.0081 
1
4
+(4 -
3
4
2+(
8
 -
4
3
-16-0.75
(2)lg5+lg2-(-
1
3
-2+(
2
-1)0+log28.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3-
3
2
x2+1,(x∈R,a>0),若在区间[-
1
2
1
2
]上,f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=log2
x+1
x-1

(1)求f(x)的定义域和值域;
(2)判断f(x)的奇偶性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=x2+|x-a|+1,x∈R
(1)若f(1)=2,求a值;
(2)讨论f(x)的奇偶性;
(3)求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的二次方程(m2-1)x2-(m-2)x+1=0的两个实数根互为倒数,则m=
 

查看答案和解析>>

同步练习册答案