精英家教网 > 高中数学 > 题目详情
19.利用数学归纳法证明:$1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{2n-1}-\frac{1}{2n}=\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$.

分析 用数学归纳法证明:(1)当n=1时,去证明等式成立;(2)假设当n=k时,等时成立,用上归纳假设后,去证明当n=k+1时,等式也成立即可.

解答 解:(1)当n=1时,左边=1-$\frac{1}{2}$=$\frac{1}{2}$,右边=$\frac{1}{2}$,命题成立.
(2)假设当n=k时命题成立,即1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2k-1}$-$\frac{1}{2k}$=$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{2k}$,
那么当n=k+1时,
左边=1-$\frac{1}{2}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{2k-1}$-$\frac{1}{2k}$+$\frac{1}{2k+1}$-$\frac{1}{2k+2}$=$\frac{1}{k+1}$+$\frac{1}{k+2}$+…+$\frac{1}{2k}$+$\frac{1}{2k+1}$-$\frac{1}{2k+2}$=$\frac{1}{k+2}$+$\frac{1}{k+3}$+…+$\frac{1}{2k+1}$+$\frac{1}{2k+2}$,
上式表明当n=k+1时命题也成立.
由(1)(2)知,命题对一切正整数均成立.

点评 本题考查数学归纳法,用好归纳假设是关键,考查逻辑推理与证明的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知圆${C_1}:{x^2}+{y^2}=1$,圆${C_2}:{(x-3)^2}+{(y-4)^2}=9$,则圆C1与圆C2的位置关系是(  )
A.内含B.外离C.相交D.相切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U={1,2,3,4,5},集合A={4,5},则∁UA=(  )
A.{5}B.{4,5}C.{1,2,3}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切,过点B(-4,0)的动直线l与圆A相交于M,N两点.
(1)求圆A的方程;
(2)当$|{MN}|=2\sqrt{11}$时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.过抛物线y2=2px(p>0)的焦点F作倾斜角为60°的直线l,若直线l与抛物线在第一象限的交点为A并且点A也在双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线上,则双曲线的离心率为$\frac{{\sqrt{21}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2017(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a∈(0,5),且a≠1,则函数f(x)=loga(ax-1)在(2,+∞)上为单调函数的概率为(  )
A.$\frac{9}{10}$B.$\frac{4}{5}$C.$\frac{1}{5}$D.$\frac{1}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,两人分别从A村出发,其中一人沿北偏东60°方向行走了1km到了B村,另一人沿北偏西30°方向行走了$\sqrt{3}$km到了C村,问B、C两村相距多远?B村在C村的什么方向上?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知m、n、s、t∈R*,m+n=3,$\frac{m}{s}+\frac{n}{t}=1$其中m、n是常数且m<n,若s+t的最小值 是$3+2\sqrt{2}$,满足条件的点(m,n)是椭圆$\frac{x^2}{4}+\frac{y^2}{16}=1$一弦的中点,则此弦所在的直线方程为(  )
A.x-2y+3=0B.4x-2y-3=0C.x+y-3=0D.2x+y-4=0

查看答案和解析>>

同步练习册答案