精英家教网 > 高中数学 > 题目详情
3.若tanθ=$\frac{1}{3}$,则cos2θ=(  )
A.$-\frac{4}{5}$B.$-\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{4}{5}$

分析 原式利用二倍角的余弦函数公式变形,再利用同角三角函数间的基本关系化简,将tanθ的值代入计算即可求出值.

解答 解:∵tanθ=$\frac{1}{3}$,
∴cos2θ=2cos2θ-1=$\frac{2}{1+ta{n}^{2}θ}$-1=$\frac{2}{1+\frac{1}{9}}$-1=$\frac{4}{5}$.
故选:D.

点评 此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=ax+b,且f(3)=7,f(5)=-1,那么f(0)=19.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设a是实数,f(x)=a-$\frac{1}{{2}^{x}+1}$(x∈R)
(1)如果f(x)为奇函数,试确定a的值.
(2)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.${({\root{3}{x}-\frac{1}{x}})^8}$二项展开式的常数项为28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U={1,2,3,4,5,6,7},A={1,2,3,4},B={3,4,5,6,7},则A∩(∁UB)=(  )
A.{1,2}B.{3,4}C.{5,6,7}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f:A→B是从A 到B的一个映射,其中A=B={(x,y)|x,y∈R},(x,y)在映射f的作用下的像是(2x-y,2y-x)
求(1)求A中元素(-1,2)在f作用下的像
(2))求B中元素(3,-3)在f 作用下的原像.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设a>0,b>0,若1是2a与2b的等差中项,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为(  )
A.8B.4C.1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{f(x-4),x>2}\\{{e}^{x},-2≤x≤2}\\{f(-x),x<-2}\end{array}$,则f(-2017)=(  )
A.1B.eC.$\frac{1}{e}$D.e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在等差数列{an}中,如果a3=4,则a1a5的最大值为(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案