精英家教网 > 高中数学 > 题目详情
3.如图,已知四棱锥的侧棱PD⊥底面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD=$\frac{1}{2}$CD=2,点M在侧棱上.
(1)求证:BC⊥平面BDP;
(2)若侧棱PC与底面ABCD所成角的正切值为$\frac{1}{2}$,点M为侧棱PC的中点,求异面直线BM与PA所成角的余弦值.

分析 (1)证明BD⊥BC,PD⊥BC,即可证明BC⊥平面BDP;
(2)取PD中点为N,并连结AN,MN,则∠PAN即异面直线BM与PA所成角,在△PAN中,利用余弦定理,即可求出异面直线BM与PA所成角的余弦值.

解答 (1)证明:由已知可算得$BD=BC=2\sqrt{2}$,∴BD2+BC2=16=DC2
故BD⊥BC,
又PD⊥平面ABCD,BC?平面ABCD,故PD⊥BC,
又BD∩PD=D,所以BC⊥平面BDP;…6分
(2)解:如图,取PD中点为N,并连结AN,MN,BM∥AN,
则∠PAN即异面直线BM与PA所成角;
又PA⊥底面ABCD,∴∠PCD即为PC与底面ABCD所成角,
即$tan∠PCD=\frac{1}{2}$,∴$PD=\frac{1}{2}CD=2$,即$PN=\frac{1}{2}PD=1$,
又$AN=\sqrt{5}$,$PA=2\sqrt{2}$,则在△PAN中,$cos∠PAN=\frac{{A{P^2}+A{N^2}-P{N^2}}}{2AP•AN}=\frac{{3\sqrt{10}}}{10}$,
即异面直线BM与PA所成角的余弦值为$\frac{{3\sqrt{10}}}{10}$.…12分.

点评 本题考查线面垂直,考查异面直线BM与PA所成角的余弦值,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图1,平面五边形SABCD中SA=$\frac{{\sqrt{15}}}{2}$,AB=BC=CD=DA=2,∠ABC=$\frac{2π}{3}$,△SAD沿AD折起成.如图2,使顶点S在底面的射影是四边形ABCD的中心O,M为BC上一点,BM=$\frac{1}{2}$.
(1)证明:BC⊥平面SOM;
(2)求四棱锥S-ABMO的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)=x|x|+bx+c,有下列四个结论:
①方程f(x)=0至少有一个实数根;
②方程f(x)=0至多有两个实数根;
③函数f(x)的图象关于点(0,c)对称;
④当b≥0时,f(x)在R上是增函数.
其中正确的结论是(  )
A.①②B.②③C.③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在一次抽奖活动中,被记为a,b,c,d,e,f的6人有获奖机会,抽奖规则如下:主办方先从这6人中随机抽取2人均获一等奖,再从余下的4人中随机抽取1人获二等奖,最后还从这余下的4人中随机抽取1人获三等奖,如果在每次抽取中,参与当次抽奖的人被抽到的机会相等.
(1)求a获一等奖的概率;
(2)若a,b已获一等奖,求c能获奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某地区有800名学员参加交通法规考试,考试成绩的频率分布直方图如图所示.其中成绩分组区间是:[75,80),[80,85),[85,90),[90,95),[95,100].规定90分及其以上为合格.
(Ⅰ)求图中a的值
(Ⅱ)根据频率分布直方图估计该地区学员交通法规考试合格的概率;
(Ⅲ)若三个人参加交通法规考试,用X表示这三人中考试合格的人数,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=2x-$\frac{lnx+2x-a}{x+1}$.
(1)若f(x)≥3恒成立,求实数a的取值范围;
(2)设F(x)=f(x)ex,若a=-1,求证:F(x)>ln2-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,ABCDEF是正六边形,下列等式成立的是(  )
A.$\overrightarrow{AE}$•$\overrightarrow{FC}$=0B.$\overrightarrow{AE}$•$\overrightarrow{DF}$>0C.$\overrightarrow{FC}$=$\overrightarrow{FD}$+$\overrightarrow{FB}$D.$\overrightarrow{FD}$•$\overrightarrow{FB}$<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在如图所示的几何体中,四边形CDPQ为矩形,四边形ABCD为直角梯形,且∠BAD=∠ADC=90°,平面CDPQ⊥平面ABCD,AB=AD=$\frac{1}{2}$CD=1,PD=$\sqrt{2}$.
(1)若M为PA的中点,求证:AC∥平面DMQ;
(2)求平面PAD与平面PBC所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,向量$\overrightarrow{c}$满足$\overrightarrow{a}$-$\overrightarrow{c}$与$\overrightarrow{b}$-$\overrightarrow{c}$的夹角为$\frac{π}{6}$,则|$\overrightarrow{a}$-$\overrightarrow{c}$|的最大值为(  )
A.$\frac{3}{2}$B.4C.$\frac{5}{2}$D.2

查看答案和解析>>

同步练习册答案