精英家教网 > 高中数学 > 题目详情
18.某地区有800名学员参加交通法规考试,考试成绩的频率分布直方图如图所示.其中成绩分组区间是:[75,80),[80,85),[85,90),[90,95),[95,100].规定90分及其以上为合格.
(Ⅰ)求图中a的值
(Ⅱ)根据频率分布直方图估计该地区学员交通法规考试合格的概率;
(Ⅲ)若三个人参加交通法规考试,用X表示这三人中考试合格的人数,求X的分布列与数学期望.

分析 (I)根据直方图知.(0.01+0.02+0.06+0.07+a)×5=1.
(II)设事件根据直方图得出(0.06+0.02)×5=0.4.求解即可.
(III)以题意得出X的取值为0,1,2,3.
据概率公式求解得出P(X=0),P(X=1),P(X=2),P(X=3).
再求解分布列得出数学期望.

解答 解:(I)由直方图知.(0.01+0.02+0.06+0.07+a)×5=1.
解得a=0.04.
(Ⅱ)设事件A为“某名学员交通考试合格”.
由直方图知,P(A)=(0.06+0.02)×5=0.4.
(III)以题意得出X的取值为0,1,2,3.
P(X=0)=(1-0.4)3=0.216.
P(X=1)=${C}_{3}^{\;}1$×0.4×(0.6)2=0.432.
P(X=2)=${C}_{3}^{2}$×(0.4)2×(0.6)=0.288.
P(X=3)=${C}_{3}^{3}$×(0.4)3=0.064.
所以X的分布列为

 X 0 1 2 3
 P 0.216 0.432 0.2880.064
E(X)=0×0.216+1×0.432×2×0.288+3×0.064=1.2.

点评 本题考查了离散型的随机变量的分布列,频率分布直方图,数学期望的求解与运用,属于中档题,需要很好地计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知直线l:y=$\frac{{\sqrt{3}}}{3}$x+1过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一个焦点和一个顶点.
(1)求椭圆C的标准方程;
(2)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点).点D在椭圆C上,且AD⊥AB,直线BD与x轴交于点M,求常数λ使得kAM=λkBD

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f1(x)=|x-1|,fn+1(x)=|(n+1)fn(x)-1|,n∈N*,若函数y=f3(x)-kx恰有4个不同零点,则正实数k的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某学生参加3门课程的考试,假设该学生第一门课程取得优秀成绩的概率为$\frac{3}{4}$,第二门、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相可独立,记X为该生取得优秀成绩的课程数,已知p(X=0)=P(X=3)=$\frac{3}{32}$.
(1)求p、q的值;
(2)求X的数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+(b-1)x+c(a>0),曲线y=f(x)在点P(0,f(0))处的切线方程为y=x+1
(1)求b、c的值;
(2)若过点(0,3)可作曲线g(x)=f(x)-x的三条不同切线,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知四棱锥的侧棱PD⊥底面ABCD,且底面ABCD是直角梯形,AD⊥CD,AB∥CD,AB=AD=$\frac{1}{2}$CD=2,点M在侧棱上.
(1)求证:BC⊥平面BDP;
(2)若侧棱PC与底面ABCD所成角的正切值为$\frac{1}{2}$,点M为侧棱PC的中点,求异面直线BM与PA所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示的多面体 ABC-EFGH中,AB∥EG,AC∥EH,且△ABC与△EGH相似,AE⊥平面EFGH,EF=FG=$\sqrt{2},GH=1,EH=\sqrt{5},∠EGH={90°}$,且 AC=$\frac{1}{2}$EH,AE=EG
(1)求证,BF⊥EG;
(2)求二面角F-BG-H的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.(理)已知圆心为O,半径为1的圆上有不同的三个点A、B、C,其中$\overrightarrow{OA}•\overrightarrow{OB}=0$,存在实数λ,μ满足$\overrightarrow{OC}+λ\overrightarrow{OA}+u\overrightarrow{OB}=\overrightarrow 0$,则实数λ,μ的关系为(  )
A.λ22=1B.$\frac{1}{λ}+\frac{1}{μ}=1$C.λμ=1D.λ+μ=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,在△ABC中,$\overrightarrow{AD}=\frac{2}{3}\overrightarrow{AC}$,$\overrightarrow{BP}=\frac{1}{3}\overrightarrow{BD}$,若$\overrightarrow{AP}=λ\overrightarrow{AB}+μ\overrightarrow{AC}$,则λ+μ的值为(  )
A.$\frac{8}{9}$B.$\frac{4}{9}$C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案