精英家教网 > 高中数学 > 题目详情
15.当x∈[2,8]时,关于x的不等式log2x+logx16-a≥0恒成立,则实数a的取值范围是a≤4.

分析 当x∈[2,8]时,log2x∈[1,3].关于x的不等式log2x+logx16-a≥0恒成立,可得:a≤$(lo{g}_{2}x+\frac{4}{lo{g}_{2}x})_{min}$,利用基本不等式的性质即可得出.

解答 解:∵当x∈[2,8]时,log2x∈[1,3].
关于x的不等式log2x+logx16-a≥0恒成立,
∴a≤$(lo{g}_{2}x+\frac{4}{lo{g}_{2}x})_{min}$
∵log2x∈[1,3],∴$lo{g}_{2}x+\frac{4}{lo{g}_{2}x}$≥$2\sqrt{lo{g}_{2}x•\frac{4}{lo{g}_{2}x}}$=4,当且仅当x=4时取等号.
∴a≤4.
则实数a的取值范围是a≤4.
故答案为:a≤4.

点评 本题考查了基本不等式的性质、对数函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.甲、乙两名运动员的5次测试成绩如图所示,设s1,s2分别表示甲、乙两名运动员成绩的标准差,$\overline{{x}_{1}}$、$\overline{{x}_{2}}$分别表示甲、乙两名运动员测试成绩的平均数,则有(  )
A.$\overline{{x}_{1}}<\overline{{x}_{2}}$,s1<s2B.$\overline{{x}_{1}}>\overline{{x}_{2}}$,s1<s2C.$\overline{{x}_{1}}>\overline{{x}_{2}}$,s1>s2D.$\overline{{x}_{1}}<\overline{{x}_{2}}$,s1>s2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.我国的人口呈现老龄化趋势,某城市为提高老年人的养老服务质量,分别从甲、乙两个社区随机抽取了7名70岁以上的老年人进行走访,这14名老年人的年龄如图的茎叶图所示,其中甲社区7人的平均年龄为85岁.
(1)计算甲社区7为位老年人的方差s2
(2)该城市决定从上述14人中随机抽取2名90岁以上的老年人进行长期跟踪走访,求甲社区至少有一名老年人被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若等差数列{an}的前n项和为Sn,a1=1,且数列$\left\{{\sqrt{S_n}}\right\}$也为等差数列,则a16的值为31.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若?x∈(0,$\frac{1}{2}$),9x<logax(a>0且a≠1),则实数a的取值范围是$\frac{\root{3}{4}}{2}≤a<1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.有3个大学毕业生,现在有两个工作岗位可选择,共有(  )种选法.
A.9B.8C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列{an}的各项均为正数,且满足a3=a1+a2,则$\frac{{a}_{9}+{a}_{10}}{{a}_{7}+{a}_{8}}$等于(  )
A.2+3$\sqrt{2}$B.2+2$\sqrt{2}$C.3-2$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在三角形ABC中,若$\overrightarrow{AB}•\overrightarrow{BC}$>0,则三角形ABC的形状为钝角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将$y=cos({2x+\frac{π}{4}})$的图象向右平移$\frac{π}{4}$个单位,则平移后图象的一个对称中心是(  )
A.$({\frac{3π}{8},0})$B.$({\frac{π}{8},0})$C.$({\frac{3π}{4},0})$D.$({\frac{π}{4},0})$

查看答案和解析>>

同步练习册答案