精英家教网 > 高中数学 > 题目详情
11.边长为1的正三角形ABC内一点M(包括边界)满足:$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$(λ∈R),则$\overrightarrow{CA}$•$\overrightarrow{CM}$的取值范围为(  )
A.[$\frac{1}{3}$,$\frac{1}{2}$]B.[$\frac{1}{3}$,$\frac{2}{3}$]C.[$\frac{1}{2}$,$\frac{2}{3}$]D.[$\frac{1}{3}$,$\frac{5}{6}$]

分析 通过已知M在三角形内或者边界,得到λ的范围,然后利用向量的数量积解答.

解答 解:因为点M在△ABC一点,(包括边界)满足:$\overrightarrow{CM}$=$\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$(λ∈R),
所以0≤λ≤$\frac{2}{3}$,所以$\overrightarrow{CA}$•$\overrightarrow{CM}$=($\frac{1}{3}$$\overrightarrow{CA}$+λ$\overrightarrow{CB}$)•$\overrightarrow{CA}$=$\frac{1}{3}$+$λ\overrightarrow{CA}•\overrightarrow{CB}$=$\frac{1}{3}+\frac{λ}{2}$,
所以$\overrightarrow{CA}$•$\overrightarrow{CM}$$∈[\frac{1}{3},\frac{2}{3}]$;
故选B.

点评 本题考查了向量的三角形法则以及数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在四棱锥E-ABCD中,底面ABCD为矩形,AD⊥平面ABE,EB=BC,F为CE上的点,且BF⊥平面ACE.
(Ⅰ)求证:AE⊥平面BCE;
(Ⅱ)求证:AE∥平面BFD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=sin2x+2cos2x-1,有下列四个结论:
①函数f(x)在区间[-$\frac{3π}{8}$,$\frac{π}{8}$]上是增函数;
②点($\frac{3π}{8}$,0)是函数f(x)图象的一个对称中心;
③函数f(x)的图象可以由函数y=$\sqrt{2}$sin2x的图象向左平移$\frac{π}{4}$得到;
④若x∈[0,$\frac{π}{2}$],则f(x)的值域为[0,$\sqrt{2}$].
则所有正确结论的序号是(  )
A.①②③B.①③C.②④D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.
(I)求角A的大小;
(Ⅱ)若△ABC的面积S=5$\sqrt{3}$,b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知正三棱锥S-ABC的侧棱SA,SB,SC两两互相垂直,D,E,F分别是它们的中点,SA=SB=SC=2,现从A,B,C,D,E,F六个点中任取三个点,加上点S,把这四个点每两个点相连后得到一个“空间体”,记这个“空间体”的体积为X(若点S与所取三点在同一平面内,则规定X=0).
(Ⅰ)求事件“X=0”的概率;
(Ⅱ)求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=x2+ax+1,若存在x0使|f(x0)|≤$\frac{1}{4}$,|f(x0+1)|≤$\frac{1}{4}$同时成立,则实数a的取值范围为[-$\sqrt{6}$,-2]∪[2,$\sqrt{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若对任意的正实数t,函数f(x)=(x-t)3+(x-lnt)3-3ax在R上都是增函数,则实数a的取值范围是(  )
A.$(-∞,\frac{1}{2}]$B.$(-∞,\frac{{\sqrt{2}}}{2}]$C.$(-∞,\sqrt{2}]$D.(-∞,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某校为了丰富学生的课余生活,决定在每周的星期二、星期四的课外活动期间同时开设先秦文化、趣味数学、国学和网络技术讲座,每位同学参加每个讲座的可能性相同.若参加讲座的人数达到预先设定的人数时称为满座,否则称为不满座,统计数据表明,各讲座的概率如表:
 星期 先秦文化 趣味数学 国学 网络技术
 星期二 $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{2}{3}$
 星期四 $\frac{2}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
根据上表:
(1)求趣味数学讲座在星期二、星期四都不满座的概率;
(2)设星期四各讲座满座的科目为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{3}=1(a>\sqrt{3})$的左、右顶点分别为A,B,右焦点为F(c,0),点P是椭圆C上异于A,B的动点,过点B作椭圆C的切线l,直线AP与直线l的交点为D,且当|BD|=2$\sqrt{2}$c时,|AF|=|DF|.
(Ⅰ)求椭圆C的方程;
(Ⅱ)当点P运动时,试判断以BD为直径的圆与直线PF的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案