精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,且2Sn=1-an(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
log
1
3
an
,cn=
bnbn+1
n+1
+
n
,求数列{cn}的前n项和Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由已知得a1=
1
3
.当n≥2时,2Sn=1-an,2Sn-1=1-an-1,两式相减,能推导出an=
1
3n
(n∈N*)

(Ⅱ)由bn=
1
log
1
3
an
=
1
log
1
3
(
1
3
)
n
=
1
n
.得cn=
n+1
-
n
n(n+1)
=
1
n
-
1
n+1
.由此能求出数列{cn}的前n项和Tn
解答: 解:(Ⅰ)当n=1时,由2S1=1-a1得:a1=
1
3
. 
当n≥2时,2Sn=1-an①;2Sn-1=1-an-1②,
上面两式相减,得:an=
1
3
an-1

所以数列{an}是以首项为
1
3
,公比为
1
3
的等比数列. 
an=
1
3n
(n∈N*)
.…(6分)
(Ⅱ)bn=
1
log
1
3
an
=
1
log
1
3
(
1
3
)
n
=
1
n

cn=
n+1
-
n
n(n+1)
=
1
n
-
1
n+1
. …(10分)
∴Tn=(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)+…+(
1
n
-
1
n+1

=1-
1
n+1
.(12分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

求矩阵A=
3 4
1 2
的逆矩阵.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司今年年初用36万元引进一种新的设备,投入设备后每年收益为21万元.同时,公司每年需要付出设备的维修和工人工资等费用,第一年各种费用2万元,第二年各种费用4万元,以后每年各种费用都增加2万元.
(1)引进这种设备后,第几年后该公司开始获利;
(2)这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB⊥面ACD,DE⊥面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点,
(1)求证:AF∥面BCE;
(2)求二面角A-CE-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,已知a1=2,当n≥2时,an=
1
3
an-1+
2
3n-1
.数列{bn}满足bn=3n-1an(n∈N*
(Ⅰ)证明:{bn}为等差数列,并求{bn}的通项公式;
(Ⅱ)记数列{
an
n
}的前n项和为Sn,是否存在正整数m,n使得
Sn-m
Sn+1-m
3m
3m+1
成立?若存在,求出所有符合条件的有序实数对(m,n);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班数学老师对班上50名同学一次考试的数学成绩进行统计,得到如下统计表:
分数段[30,50)[50,70)[70,90)[90,110)[110,130)[130,150]
人数2a121610c
频率0.040.160.240.32bd
(1)求表中a,b,c的值,并估计该班的平均分x;
(2)若该老师想在低于70分的所有同学中随机挑选3位同学了解学习情况,记X为所选3人中分数在[30,50)的同学的人数,求X的概率分布列和均值EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
+
2
x2
n的展开式中,第5项的系数与第3项的系数之比是10:1,求展开式中:
(1)含x-1的项;
(2)系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,点(an+2,Sn+1)在直线y=4x-5上,其中n∈N*,令bn=an+1-2an,且 a1=1.
(1)求{bn}的通项公式;
(2)若存在数列{Cn}满足等式:bn=
C1
1
+
C2
2
+
C3
3
+…+
Cn
n
(n∈N*),求{Cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,除棱PC外,其余棱均等长,M为棱AB的中点,O为线段MC上靠近点M的三等分点.
(1)若PO⊥MC,求证:PO⊥平面ABC;
(2)试在平面PAB上确定一点Q,使得OQ∥平面PAC,且OQ∥平面PBC,并给出证明.

查看答案和解析>>

同步练习册答案