精英家教网 > 高中数学 > 题目详情
6.函数f(x)是定义在R上的减函数,且f(x)>0恒成立,若对任意的x,y∈R,都有f(x+y)=f(x)•g(x).
(1)求f(0)的值;
(2)若f(-1)=3,解不等式$\frac{f({x}^{2})•f(10)}{f(7x)}$≤9.

分析 (1)令x=y=0,f(0)=f2(0),f(x)>0,f(0)=1;
(2)原不等式等价于f(x2)f(10)≤9f(7x )⇒f(x2)f(10)≤f(7x)f(-2)⇒f(x2+10)≤f(7x-2)又f(x)是定义在R上的减函数,x2+10≥7x-2即可.

解答 解(1)令x=y=0,∴f(0)=f2(0),∵f(x)>0,∴f(0)=1,…(3分)
(2)∵f(x)>0,∴$\frac{{f({x^2})f(10)}}{f(7x)}≤9$,得f(x2)f(10)≤9f(7x),…(4分)
∵f(-1)=3,∴9=3×3=f(-1)f(-1)=f(-2),…(6分)
∴f(x2)f(10)≤f(7x)f(-2)可化为,f(x2+10)≤f(7x-2),…(8分)
又f(x)是定义在R上的减函数,∴x2+10≥7x-2,…(10分)
解得,x≤3,x≥4,…(11分)
即原不等式的解集为(-∞,3]∪[4,+∞)…(12分)

点评 本题考查了抽象函数的赋值法,及抽象函数不等式的解法,关键是根据单调性及定义域进行转化,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若复数z=$\frac{4-2ai}{1-i}$(a∈R)的实部为1,则z的虚部为(  )
A.1B.3C.-1D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)求函数$f(x)=\frac{1}{{{{sin}^2}x}}+\frac{4}{{{{cos}^2}x}}$,$x∈(0,\frac{π}{2})$的最小值.
(2)已知不等式ax2+bx+c>0的解集为(α,β),且0<α<β,试用α,β表示不等式cx2+bx+a<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$两渐近线的夹角θ满足$sinθ=\frac{4}{5}$,焦点到渐近线的距离d=1,则该双曲线的焦距为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$或$\sqrt{5}$C.$\sqrt{5}$或$2\sqrt{5}$D.以上都不是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设命题p:实数x满足x2-4ax+3a2<0(a>0),命题q:实数x满足$\frac{x-3}{x-2}≤0$.
(1)若命题p的解集为P,命题q的解集为Q,当a=1时,求P∩Q;
(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,正三棱柱ABC-A1B1C1中,D,E,M分别是线段BC,CC1,AB的中点,AA1=2AB=4.
(1)求证:DE∥平面A1MC;
(2)在线段AA1上是否存在一点P,使得二面角A1-BC-P的余弦值为$\frac{{7\sqrt{19}}}{38}$?若存在,求出AP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图5所示,四边形ABCD是边长为2的正方形,四边形BDFE是平行四边形,点M,N分别是BE,CF的中点.
(1)求证:MN∥平面ABCD;
(2)若△ABE是等边三角形且平面ABE⊥平面ABCD,记三棱柱E-ABF的体积为S1,四棱锥F-ABCD的体积为S2,求$\frac{S_1}{S_2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={1,3,5},B={3,5,7},则A∪B={1,3,5,7}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.高三某班要安排6名同学值日(周日休息),每天安排一人,每人值日一天,要求甲必须安排在周一到周四的某一天,乙必须安排在周五或周六的某一天,则不同的值日生表有多少种?(  )
A.144B.192C.360D.720

查看答案和解析>>

同步练习册答案