精英家教网 > 高中数学 > 题目详情
14.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$两渐近线的夹角θ满足$sinθ=\frac{4}{5}$,焦点到渐近线的距离d=1,则该双曲线的焦距为(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$或$\sqrt{5}$C.$\sqrt{5}$或$2\sqrt{5}$D.以上都不是

分析 运用双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$两渐近线的夹角θ满足$sinθ=\frac{4}{5}$,得到$\frac{b}{a}$=2或$\frac{1}{2}$,结合点到直线的距离公式可得b,再由a,b,c的关系即可得到c,进而得到焦距.

解答 解:∵双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$两渐近线的夹角θ满足$sinθ=\frac{4}{5}$,
∴$\frac{b}{a}$=2或$\frac{1}{2}$,
设焦点为(c,0),渐近线方程为y=$\frac{b}{a}$x,
则d=$\frac{|bc|}{\sqrt{{a}^{2}+{b}^{2}}}$=b=1,
又b2=c2-a2=1,
解得c=$\frac{\sqrt{5}}{2}$或$\sqrt{5}$.
则有焦距为$\sqrt{5}$或2$\sqrt{5}$.
故选C.

点评 本题考查双曲线的方程和性质,主要考查焦距和渐近线方程的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知点$\overrightarrow{a}$=(3,m),$\overrightarrow{b}$=(1,-2),若$\overrightarrow{a}$•$\overrightarrow{b}$+3$\overrightarrow{b}$2=0,则实数m=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.三棱锥P-ABC内接于球O,PA=PB=PC=3,当三棱锥P-ABC的三个侧面积和最大时,球O的体积为$\frac{{27\sqrt{3}π}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,正方体ABCD-A1B1C1D1中,求异面直线AD1与A1C1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a=log0.60.3,b=0.60.3,则(  )
A.a>1>bB.a>b>1C.b>a>1D.b>1>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某人在静水中游泳的速度为$4\sqrt{3}$千米/时,他现在水流速度为4千米/时的河中游泳.
(Ⅰ)如果他垂直游向河对岸,那么他实际沿什么方向前进?实际前进的速度为多少?
(Ⅱ)他必须朝哪个方向游,才能沿与水流垂直的方向前进?实际前进的速度为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)是定义在R上的减函数,且f(x)>0恒成立,若对任意的x,y∈R,都有f(x+y)=f(x)•g(x).
(1)求f(0)的值;
(2)若f(-1)=3,解不等式$\frac{f({x}^{2})•f(10)}{f(7x)}$≤9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.点P是椭圆$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1上的一点,F1和F2是焦点,且∠F1PF2=30°,则△F1PF2的面积是8-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2$\sqrt{3}$cos2$\frac{x}{4}$-$\sqrt{3}$.
(1)求函数f(x)的最小正周期和对称轴方程;
(2)若△ABC中,内角A满足f(A)=$\frac{3}{2}$,且边BC长为3,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案