精英家教网 > 高中数学 > 题目详情
15.已知sinx=-$\frac{1}{3}$,x为第三象限角,则cosx=$-\frac{2\sqrt{2}}{3}$.

分析 由sinx=-$\frac{1}{3}$,x为第三象限角,可得:cosx=-$\sqrt{1-si{n}^{2}x}$.

解答 解:∵sinx=-$\frac{1}{3}$,x为第三象限角,
∴cosx=-$\sqrt{1-si{n}^{2}x}$=$-\frac{{2\sqrt{2}}}{3}$,
故答案为:$-\frac{2\sqrt{2}}{3}$.

点评 本题考查了同角三角函数基本关系式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系中,以O为极点,x轴非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}t}{2}}\end{array}\right.$(t为参数),直线l与曲线C交于M,N两点.
(1)写出曲线C的直角坐标方程和直线l的普通方程
(2)求弦长|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且经过点A(0,-1).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)如果过点$B(0,\frac{3}{5})$的直线与椭圆交于M,N两点(M,N点与A点不重合),求证:△AMN为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线x+$\sqrt{3}$y-a=0的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)为定义域D上的单调函数,且存在区间[a,b]⊆D(其中a<b),使得当x∈[a,b]时,f(x)的取值范围恰为[a,b],则称函数f(x)是D上的正函数.若函数g(x)=x2-m是(-∞,0)上的正函数,则实数m的取值范围为(  )
A.$(-1,-\frac{3}{4})$B.$(-\frac{3}{4},0)$C.$(\frac{3}{4},1)$D.$(1,\frac{5}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设a,b都是不等于1的正数,则“loga3<logb3”是“3a>3b>3”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.威力实施“爱的教育”实践活动,宇华教育集团决定举行“爱在宇华”教师演讲比赛.焦作校区决定从高中部、初中部、小学部和幼教部这四个部门选出12人组成代表队代表焦作校区参赛,选手来源如下表:
部门高中部初中部小学部幼教部
人数4422
焦作校区选手经过出色表现获得冠军,现要从中选出两名选手代表冠军队发言.
(1)求这两名队员来自同一部门的概率;
(2)设选出的两名选手中来自高中部的人数为ξ,求随机变量ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若等比数列{an}满足${a_2}{a_4}=\frac{1}{2}$,则${a_1}a_3^2{a_5}$=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=$\frac{1}{2}$x2+lnx-mx(m>0).
(I)求f(x)的单调区间;
(Ⅱ)求f(x)的零点个数;
(Ⅲ)证明:曲线y=f(x)上没有经过原点的切线.

查看答案和解析>>

同步练习册答案