分析 (1)将极坐标方程两边同乘ρ,根据极坐标与直角坐标的对应关系得出曲线C的直角方程;将直线的参数方程两式相减消去参数t即得直线l的普通方程;
(2)将直线l的参数方程代入曲线C的直角坐标方程,得到M,N对应的参数,使用根与系数得关系得出MN的长.
解答 解:(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,∴曲线C的直角坐标方程为y2=4x.
∵$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}t}{2}}\end{array}\right.$,∴x+2=y+4,即x-y-2=0.∴直线l的普通方程是x-y-2=0.
(2)将l的参数方程代入y2=4x得(-4+$\frac{\sqrt{2}}{2}t$)2=4(-2+$\frac{\sqrt{2}}{2}t$),即t2-12$\sqrt{2}$t+48=0,
∴t1+t2=12$\sqrt{2}$,t1t2=-48.
∴|MN|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=$\sqrt{(12\sqrt{2})^{2}+4×48}$=4$\sqrt{30}$.
点评 本题考查了极坐标方程,参数方程与普通方程的转化,参数方程的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m?α,l⊥α,则m∥α | B. | 若l⊥n,则m⊥n | C. | 若l⊥n,则m∥n | D. | 若m∥n,n?α,则l⊥α |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com