精英家教网 > 高中数学 > 题目详情
8.设F1、F2分别是椭圆的左、右焦点,若在直线x=$\frac{{a}^{2}}{c}$上存在点P,使线段PF1的中垂线过点F2,则椭圆的离心率的取值范围是[$\frac{\sqrt{3}}{3},1$).

分析 设x=$\frac{{a}^{2}}{c}$与x轴的交点为Q,连结PF2,根据平面几何的知识可得|PF2|=|F1F2|=2c,且|PF2|≥|QF2|,由此得到关于a、c的不等关系,化简得到关于离心率e的一元二次不等式,求解一元二次不等式后与椭圆离心率的范围取交集得答案.

解答 解:如图,
设x=$\frac{{a}^{2}}{c}$与x轴的交点为Q,连结PF2
∵PF1的中垂线过点F2
∴|F1F2|=|PF2|,可得|PF2|=2c,
∵|QF2|=$\frac{{a}^{2}}{c}-c$,且|PF2|≥|QF2|,
∴2c≥$\frac{{a}^{2}}{c}$-c,两边都除以a得,
2•$\frac{c}{a}$≥$\frac{a}{c}-\frac{c}{a}$,
即2e≥$\frac{1}{e}-e$,整理得3e2≥1,
解得e≥$\frac{\sqrt{3}}{3}$,又e∈(0,1),
∴椭圆的离心率的取值范围是[$\frac{\sqrt{3}}{3},1$).
故答案为:[$\frac{\sqrt{3}}{3},1$).

点评 本题考查椭圆的简单性质,考查了椭圆离心率的范围的求法,着重考查平面几何知识在解圆锥曲线问题中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知数列{an}和{bn}满足an=lg3n-lg2n+1,bn=a3n,判断{b}n是否为等差数列?若是,则写出它的通项公式;若不是,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=2cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$sin2x+sinxcosx.
(I)求函数f(x)的递增区间;
(2)求函数f(x)的对称轴和对称中心;
(3)若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.化简:$\frac{sin(π+α)cos(2π+α)}{sin(-α-π)cos(-π+α)}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知椭圆的方程为$\frac{y^2}{4}+\frac{x^2}{2}$=1,则该椭圆的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.一个单位共有职工300人,其中男职工180人,女职工120人.用分层抽样的方法从全体职工中抽取一个容量为50的样本,应抽取女职工20人.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知曲线C的方程是$\frac{x^2}{m}+{y^2}=1(m∈R$,且m≠0).给出下列三个命题:
①若m>0,则曲线C表示椭圆;
②若m<0,则曲线C表示双曲线;
③若曲线C表示焦点在x轴上的椭圆,则m的值越大,椭圆的离心率越大.
其中,所有正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知F1,F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右两个焦点,若椭圆上存在点P使得PF1⊥PF2,则该椭圆的离心率的取值范围是(  )
A.$[{\frac{{\sqrt{5}}}{5},1})$B.$[{\frac{{\sqrt{2}}}{2},1})$C.$({0,\frac{{\sqrt{5}}}{5}}]$D.$({0,\frac{{\sqrt{2}}}{2}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(1,-2),若$\overrightarrow{a}$⊥($\overrightarrow{a}$+t$\overrightarrow{b}$),则实数t的值为(  )
A.-5B.1C.-1D.5

查看答案和解析>>

同步练习册答案