精英家教网 > 高中数学 > 题目详情
10.已知($\sqrt{x}$-$\frac{a}{{x}^{2}}$)5的常数项为15,则函数f(x)=log${\;}_{\frac{1}{3}}$(x+1)-$\frac{a}{x+1}$在区间[-$\frac{2}{3}$,2]上的值域为[0,10].

分析 利用二项式定理的通项公式求出a,在结合函数的单调性即可求解在区间[-$\frac{2}{3}$,2]上函数f(x)的值域.

解答 解:由题意($\sqrt{x}$-$\frac{a}{{x}^{2}}$)5的常数项为15,即${C}_{5}^{r}(-\frac{a}{{x}^{2}})^{r}({x}^{\frac{1}{2}})^{5-r}$中$-2r+\frac{1}{2}(5-r)=0$,解得:r=1,
则${C}_{5}^{1}(-a)^{1}=15$,可得a=-3.
那么可得函数f(x)=log${\;}_{\frac{1}{3}}$(x+1)+$\frac{3}{x+1}$,
∵在区间[-$\frac{2}{3}$,2]上y=log${\;}_{\frac{1}{3}}$(x+1)和y=$\frac{3}{x+1}$都是减函数,
∴函数f(x)在区间[-$\frac{2}{3}$,2]上是减函数
当x=$-\frac{2}{3}$时,函数f(x)取得最大值为10.
当x=2时,函数f(x)取得最小值为0.
∴函数f(x)=log${\;}_{\frac{1}{3}}$(x+1)+$\frac{3}{x+1}$在区间[-$\frac{2}{3}$,2]上的值域为[0,10]
故答案为:[0,10]

点评 本题考查二项式定理的通项公式和对数函数的单调性的判断以及运用求解值域的问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题,松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等,如图是源于其思想的一个程序框图,若输入的a=10,b=4,则输出的n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xlnx+2,g(x)=x2-mx.
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若方程f(x)+g(x)=0有两个不同的实数根,求证:f(1)+g(1)<0;
(Ⅲ)若存在x0∈[$\frac{1}{e}$,e]使得mf′(x)+g(x)≥2x+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知正项等比数列{an}的第四项,第五项,第六项分别为1,m,9,则双曲线$C:\frac{y^2}{6}-\frac{x^2}{m}=1$的离心率为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在一次化学测试中,高一某班50名学生成绩的平均分为82分,方差为8.2,则下列四个数中不可能是该班化学成绩的是(  )
A.60B.70C.80D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.四棱锥P-ABCD中,底面ABCD为矩形,$AB=2,BC=2\sqrt{2},E$为BC的中点,连接AE,BD,交点H,PH⊥平面ABCD,M为PD的中点.
(1)求证:平面MAE⊥平面PBD;
(2)设PE=1,求二面角M-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A、B均为锐角,则cosA>sinB是△ABC为钝角三角形的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=3+tcosφ}\\{y=1+tsinφ}\end{array}\right.$(t为参数),在以坐标原点为极点,x轴的正半轴为极轴的极坐标中,圆C的方程为ρ=4cosθ.
(Ⅰ)求l的普通方程和C的直角坐标方程;
(Ⅱ)当φ∈(0,π)时,l与C相交于P,Q两点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是菱形,$∠DAB=\frac{π}{3}$,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,E是AB中点.
(Ⅰ)求证:直线AM∥平面PNC;
(Ⅱ)求证:直线CD⊥平面PDE;
(III)在AB上是否存在一点G,使得二面角G-PD-A的大小为$\frac{π}{3}$,若存在,确定G的位置,若不存在,说明理由.

查看答案和解析>>

同步练习册答案