精英家教网 > 高中数学 > 题目详情
2.求下列各式的值:
(1)$\frac{\sqrt{3}+tan15°}{1-\sqrt{3}tan15°}$
(2)tan15°+tan30°+tan15°tan30°.

分析 由条件利用两角和的正切公式,求得要求式子的值.

解答 解:(1)$\frac{\sqrt{3}+tan15°}{1-\sqrt{3}tan15°}$=$\frac{tan60°+tan15°}{1-tan60°tan15°}$=tan75°=tan(45°+30°)
=$\frac{tan45°+tan30°}{1-tan45°tan30°}$=$\frac{1+\frac{\sqrt{3}}{3}}{1-\frac{\sqrt{3}}{3}}$=$\frac{3+\sqrt{3}}{3-\sqrt{3}}$=$\frac{{(3+\sqrt{3})}^{2}}{9-3}$=2+$\sqrt{3}$.
(2)tan15°+tan30°+tan15°tan30°=tan(15°+30°)(1-tan15°tan30°)+tan15°tan30°
=1-tan15°tan30°+tan15°tan30°=1.

点评 本题主要考查两角和的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=cos2x+\sqrt{3}sin2x$,在下列四个命题中:
①函数的表达式可以改写为$f(x)=2cos(2x-\frac{π}{3})$;
②当$x=kπ+\frac{π}{6}$(k∈Z)时,函数取得最大值为2;
③若x1≠x2,且f(x1)=f(x2)=0,则${x_1}-{x_2}=\frac{kπ}{2}(k∈Z且k≠0)$;
④函数f(x)的图象关于直线$x=\frac{2π}{3}$对称;
其中正确命题的序号是①②③④(把你认为正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)$≡\sqrt{3}$sinωx+cosωx的图象向右平移$\frac{π}{3}$个单位后所得的图象既关于y轴对称也关于点($\frac{5π}{16}$,0)对称,则ω的值可以是(  )
A.2B.6C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知数列{an}的前n项和Sn,满足an+Sn=2n,则an=$2-{(\frac{1}{2})}^{n-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知α∈(0,$\frac{π}{2}$),β∈(一$\frac{π}{2}$,0),且coa(α-β)=$\frac{3}{5}$,sinβ=-$\frac{\sqrt{2}}{10}$,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数y=1+2sinxcosx.
(1)求函数的最小正周期;
(2)当x∈[-$\frac{π}{2}$,$\frac{π}{6}$]时,求最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.P是边长为a的正三角形ABC所在平面外一点,且PA=PB=PC=a,则四面体PABC外接球半径为$\frac{\sqrt{6}}{4}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列计算正确的是④(将你认为所有正确的结论的序号填上)
①(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$;
②(x2cosx)′=-2xsinx;
③(2x)′=2•2x-1
④(log2x)′=$\frac{1}{xln2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆O:x2+y2=1的切线l与椭圆C:x2+3y2=4相交于A,B两点.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)求证:OA⊥OB;
(Ⅲ)求△OAB面积的最大值.

查看答案和解析>>

同步练习册答案