精英家教网 > 高中数学 > 题目详情
14.设全集U=R,集合M={x|0<x≤1},N={x|x≤0},则M∩(∁UN)=(  )
A.{x|0≤x<1}B.{x|0<x≤1}C.{x|0≤x≤1}D.{x|x<1}

分析 根据集合的基本运算进行求解即可.

解答 解:∵N={x|x≤0},
∴∁UN={x|x>0},
则M∩(∁UN)={x|0<x≤1},
故选:B

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.将边长为2的等边△PAB沿x轴正方向滚动,某时刻P与坐标原点重合(如图),设顶点P(x,y)的轨迹方程是y=f(x),关于函数y=f(x)的有下列说法:
①f(x)的值域为[0,2];
②f(x)是周期函数;
③f(4.1)<f(π)<f(2014);
④${∫}_{0}^{6}$f(x)dx=$\frac{9π}{2}$.
其中正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设$\overrightarrow{a}$=(4,3),$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为$\frac{{\sqrt{2}}}{2}$,$\overrightarrow{b}$在x轴上的投影为1,则$\overrightarrow{b}$=(1,-1)或(1,-$\frac{31}{17}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知全集U=R,集合A={x|${\frac{x-1}{x+3}$≤0},集合B={x|y=$\sqrt{3-{{(\frac{1}{3})}^x}}$,x∈R},则A∩(CUB)为(  )
A.{x|-3<x≤-1}B.{x|-3≤x<-1}C.{x|-3≤x≤-1}D.{x|-3<x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.对于定义在区间M上的函数f(x),若满足对?x1,x2∈M且x1<x2时,都有f(x1)≤f(x2),则称函数f(x)为区间M上的“非减函数”,若f(x)为区间[0,1]上的“非减函数”,且f(0)=0,f(x)+f(1-x)=1;又当x∈[$\frac{3}{4}$,1]时,f(x)≤2x-1恒成立.有下列命题:①?x∈[0,1],f(x)≥0;②当x1,x2∈[0,1]且x1≠x2时,f(x1)≠f(x2);③f($\frac{1}{7}$)+f($\frac{5}{11}$)+f($\frac{7}{13}$)+f($\frac{6}{7}$)=2;④当x∈[$\frac{3}{4}$,1]时,f(f(x))≤f(x).
其中正确命题有(  )
A.②③B.①②③C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知不等式xy≤ax2+2y2,若对任意x∈[1,2]及y∈[2,3],该不等式恒成立,则实数a的范围是(  )
A.-$\frac{35}{9}$≤a≤-1B.-3≤a≤-1C.a≥-1D.a≥-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{m}$=($\sqrt{3}$cosx,-$\frac{5}{2}$),$\overrightarrow{n}$=(sinx,-$\frac{1}{2}$),函数f(x)=($\overrightarrow{m}$$+\overrightarrow{n}$)$•\overrightarrow{n}$
(Ⅰ)求f(x)的解析式与最小正周期;
(Ⅱ)在△ABC中,内角A,B,C所对的边分别为a,b,c,其中A为锐角,a=2$\sqrt{3}$,c=4,且f(x)恰好在[0,$\frac{π}{2}$]上取得最大值,求角B的值以及△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,三内角A,B,C的对边分别为a,b,c且a2=b2+c2+bc,a=$\sqrt{3}$,S为△ABC的面积,则S+$\sqrt{3}$cosBcosC的最大值为(  )
A.1B.$\sqrt{3}$+1C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知复数f(n)=in(n∈N*),则集合{z|z=f(n)}中元素的个数是(  )
A.4B.3C.2D.无数

查看答案和解析>>

同步练习册答案