精英家教网 > 高中数学 > 题目详情
18.设复数z满足$\frac{z}{|3+4i|}$=$\frac{1-i}{3-4i}$(其中i为虚数单位),则z的共轭复数为(  )
A.$\frac{-7-i}{5}$B.$\frac{-7+i}{5}$C.$\frac{7+i}{5}$D.$\frac{7-i}{5}$

分析 利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.

解答 解:∵复数z满足$\frac{z}{|3+4i|}$=$\frac{1-i}{3-4i}$(其中i为虚数单位),
∴z=$\frac{5(1-i)(3+4i)}{(3-4i)(3+4i)}$=$\frac{7+i}{5}$,
则z的共轭复数$\overline{z}$=$\frac{7-i}{5}$.
故选:D.

点评 本题考查了复数的运算法则、共轭复数的定义、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,设抛物线E:y2=2px(p>0)的焦点为F,准线为直线l,点A、B在直线l上,点M为抛物线E第一象限上的点,△ABM是边长为$\frac{8}{3}$$\sqrt{3}$的等边三角形,直线MF的倾斜角为60°.
(1)求抛物线E的方程;
(2)如图,直线m过点F交抛物线E于C、D两点,Q(2,0),直线CQ、DQ分别交抛物线E于G、H两点,设直线CD、GH的斜率分别为k1、k2,求$\frac{{k}_{1}}{{k}_{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.现用随机模拟方法近似计算积分${∫}_{0}^{2}$$\sqrt{1-\frac{{x}^{2}}{4}}$dx,先产生两组(每组1000个)在区间[0,2]上的均匀随机数x1,x2,x3,…,x1000和y1,y2,y3,…,y1000,由此得到1000个点(xi,yi)(i=1,2,…,1000),再数出其中满足$\frac{{x}_{i}^{2}}{4}$+${y}_{i}^{2}$≤1(i=1,2,…,1000)的点数400,那么由随机模拟方法可得积分${∫}_{0}^{2}$$\sqrt{1-\frac{{x}^{2}}{4}}$dx的近似值为(  )
A.1.4B.1.6C.1.8D.2.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1、F2,上顶点为A,过A与AF2垂直的直线交x轴负半轴于Q点,且F1恰好是线段QF2的中点.
(1)若过A、Q、F2三点的圆恰好与直线3x-4y-7=0相切,求椭圆C的方程;
(2)在(1)的条件下,B是椭圆C的左顶点,过点R($\frac{3}{2}$,0)作与x轴不重合的直线l交椭圆C于E、F两点,直线BE、BF分别交直线x=$\frac{8}{3}$于M、N两点,若直线MR、NR的斜率分别为k1,k2,试问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系xOy中,过点M(1,0)的直线l与圆x2+y2=5交于A,B两点,其中A点在第一象限,且$\overrightarrow{BM}$=2$\overrightarrow{MA}$,则直线l的方程为x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,角A,B,C的对边分别为a,b,c,已知(2a+2c-b)cosC=(a+c)cosB+bcosA,若c=3,则a+b的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(1,3),$\overrightarrow{c}$=(k,-2),若($\overrightarrow{a}$-$\overrightarrow{c}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),则k=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某市为了节约生活用水,计划在本市试行居民生活用水定额管理.为了较合理地确定居民日常用水量的标准,有关部门抽样调查了100位居民.表是这100位居民月均用水量(单位:吨)的频率分布表,根据表解答下列问题:
(1)求表中a和b的值;
(2)请将下面的频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.
分组频数频率
[0,1)100.1
[1,2)a0.2
[2,3)300.3
[3,4)20b
[4,5)100.1
[5,6)100.1
合计1001

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点O为△ABC所在平面内一点,${\overrightarrow{OA}^2}={\overrightarrow{OB}^2}={\overrightarrow{OC}^2}$,若$\overrightarrow{AB}+\overrightarrow{AC}=2\overrightarrow{AO}$,且$|{\overrightarrow{AC}}|=|{\overrightarrow{AO}}|$,则$\overrightarrow{AB}$与$\overrightarrow{BC}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案