分析 根据平面向量的坐标运算与数量积运算,列出方程求出k的值.
解答 解:向量$\overrightarrow{a}$=(3,1),$\overrightarrow{b}$=(1,3),$\overrightarrow{c}$=(k,-2),
则$\overrightarrow{a}$-$\overrightarrow{c}$=(3-k,3),
$\overrightarrow{a}$-$\overrightarrow{b}$=(2,-2),
又($\overrightarrow{a}$-$\overrightarrow{c}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$),
∴($\overrightarrow{a}$-$\overrightarrow{c}$)⊥($\overrightarrow{a}$-$\overrightarrow{b}$)=2(3-k)+3×(-2)=0,
解得k=0.
故答案为:0.
点评 本题考查了平面向量的坐标运算与数量积运算问题,是基础题目.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{-7-i}{5}$ | B. | $\frac{-7+i}{5}$ | C. | $\frac{7+i}{5}$ | D. | $\frac{7-i}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com