精英家教网 > 高中数学 > 题目详情
15.已知函数$f(x)=\left\{\begin{array}{l}sin(\frac{π}{2}x)-1,x<0\\{log_a}x(a>0,a≠1),x>0\end{array}\right.$的图象上关于y轴对称的点至少有5对,则实数的取值范围是(  )
A..$(0,\frac{{\sqrt{5}}}{5})$B.$(\frac{{\sqrt{5}}}{5},1)$C.$(0,\frac{1}{3})$D.$(\frac{1}{3},1)$

分析 求出函数f(x)=sin($\frac{π}{2}$x)-1,(x<0)关于y轴对称的解析式,利用数形结合即可得到结论.

解答 解:若x>0,则-x<0,
∵x<0时,f(x)=sin($\frac{π}{2}$x)-1,
∴f(-x)=sin(-$\frac{π}{2}$x)-1=-sin($\frac{π}{2}$x)-1,
则若f(x)=sin($\frac{π}{2}$x)-1,(x<0)关于y轴对称,
则f(-x)=-sin($\frac{π}{2}$x)-1=f(x),
即y=-sin($\frac{π}{2}$x)-1,x>0,
设g(x)=-sin($\frac{π}{2}$x)-1,x>0
作出函数g(x)的图象,
要使y=-sin($\frac{π}{2}$x)-1,x>0与f(x)=logax,x>0的图象至少有5个交点,
则0<a<1且满足f(9)<g(9),
即-2<loga9,
即loga9>logaa-2
则9<$\frac{1}{{a}^{2}}$,
解得0<a<$\frac{1}{3}$,
故选:C.

点评 本题主要考查分段函数的应用,作出函数关于y轴对称的图象,利用数形结合的思想是解决本题的关键.综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.函数f(x)=e2+x-2的零点所在的区间是(  )
A.(-2,-1)B.(-1,0)C.(1,2)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点F是抛物线C:y2=2px(p>0)的焦点,点P(2,y0)在抛物线C上,且|PF|=3.
(1)求抛物线C的方程及其准线方程;
(2)若过点F的直线l与抛物线C相交于A,B两个不同点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=x2+sinx,则f′(0)=(  )
A.0B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2x3-6x2+m在[-2,2]上的最大值为3,求f(x)在[-2,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合$A=\{x|\frac{2x-3}{x+1}≤1\},B=\{x||x|≤3\}$,则A∩B=(  )
A.(-1,3]B.[-1,3]C.[-3,3]D.[-3,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列向量组中,能作为表示它们所在平面内所有向量的基底的是(  )
A.$\overrightarrow{a}$=(0,0),$\overrightarrow{b}$=(2,3)B.$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(2,-6)C.$\overrightarrow{a}$=(4,6),$\overrightarrow{b}$=(6,9)D.$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-4,6)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.我国古代数学名著《九章算数》中的更相减损法的思路与如图相似.记R(a\b)为a除以b所得余数(a,b∈N*),执行程序框图,若输入a,b分别为243,45,则输出的b的值为(  )
A.0B.1C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x3+ax2+x+1存在单调递减区间,则实数α的取值范围为(  )
A.(-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞)B.[-$\sqrt{3}$,$\sqrt{3}$]C.(-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞)D.(-$\sqrt{3}$,$\sqrt{3}$)

查看答案和解析>>

同步练习册答案