精英家教网 > 高中数学 > 题目详情

甲、乙两人在相同条件下各射击10次,每次命中的环数如下:


8
6
7
8
6
5
9
10
4
7

6
7
7
8
6
7
8
7
9
5
 
(1)分别计算以上两组数据的平均数;
(2)分别计算以上两组数据的方差;
公式:
(3)根据计算结果,估计一下两人的射击情况.

(1)甲的平均分为:
乙的平均分为: ;
(2)甲的方差为:
乙的方差为:
(3)乙的射击水平要比甲的射击水平更稳定.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
PM2. 5是指大气中直径小于或等于2. 5微米的颗粒物,也称为 可人肺颗粒物.我国PM2. 5标准采用世卫组织设定的最宽限 值,即PM2.5日均值在35微克/立方米以下空气质量为一级; 在35微克/立方米~75微克/立方米之间空气质量为二级;在 75微克/立方米以上空气质量为超标.
某市环保局从市区2012年全年每天的PM2.5监测数据中 随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为 茎,个位为叶)

(I)从这9天的数据中任取2天的数据,求恰有一天空气质量达到一级的概率;
(II) 以这9天的PM2.   5日均值来估计供暖期间的空气质量情况,则供暖期间(按150天计算)中大约有多少天的空气质量达到一级.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)某种产品的广告费支出x与消费额y(单位:百万元)之间有如下对应数据:

x
 
2
 
4
 
5
 
6
 
8
 
y
 
30
 
40
 
60
 
50
 
70
 
(1)求线性回归方程;
(2)预测当广告费支出为700万元时的销售额.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题14分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据:


3
4
5
6

2.5
3
4
4.5

(1)请画出上表数据的散点图;并指出x,y 是否线性相关;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程
(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
(参考:用最小二乘法求线性回归方程系数公式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校为了解学生的学科学习兴趣,对初高中学生做了一个喜欢数学和喜欢语文的抽样调查,随机抽取了名学生,相关的数据如下表所示:

 
数学
语文
总计
初中



高中



总计



(1) 用分层抽样的方法从喜欢语文的学生中随机抽取名,高中学生应该抽取几名?
(2) 在(1)中抽取的名学生中任取名,求恰有名初中学生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现在采用分层抽样法(层内采用不放回的简单随机抽样)从甲,乙两组中共抽取3人进行技术考核.
(1)求甲,乙两组各抽取的人数;
(2)求从甲组抽取的工人中恰有1名女工的概率;
(3)令X表示抽取的3名工人中男工人的人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某种产品的广告费支出与销售额(单位:百万元)之间有如下对应数据:


2
4
5
6
8

30
40
60
50
70
(1)画出散点图;
(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程.(其中
)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5项预赛成绩记录如下:


82
82
79
95
87

95
75
80
90
85
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)为抗击金融风暴,某工贸系统决定对所属企业给予低息贷款的扶持,该系统先根据相关评分标准对各个企业进行了评估,并依据评估得分将这些企业分别评定为优秀、良好、合格、不合格4个等级,然后根据评估等级分配相应的低息贷款金额,其评估标准和贷款金额如下表:

评估得分
[50,60)
[60,70)
[70,80)
[80,90]
评定类型
不合格
合格
良好
优秀
贷款金额(万元)
0
200
400
800
为了更好地掌控贷款总额,该系统随机抽查了所属部分企业的评估分数,得其频率分布直方图如下
(1)估计该系统所属企业评估得分的中位数及平均分;
(2)该系统要求各企业对照评分标准进行整改,若整改后优秀企业数量不变,不合格企业、合格企业、良好企业的数量依次成等差数列,系统所属企业获得贷款的均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数的百分比的最大值是多少?

查看答案和解析>>

同步练习册答案