精英家教网 > 高中数学 > 题目详情
20.在△ABC中,2asinB=b,$\frac{1}{2}$sinB=cos2$\frac{C}{2}$,又BC边上的中线AM长为$\sqrt{7}$,则△ABC的面积等于$\sqrt{3}$.

分析 由2asinB=b,利用正弦定理可得sinA=$\frac{1}{2}$,由$\frac{1}{2}$sinB=cos2$\frac{C}{2}$,可得:sinB=1+cosC≤1,可解得:A=$\frac{π}{6}$,B+C=$\frac{5π}{6}$.进而可求得:sin(B+$\frac{π}{3}$)=1,结合范围B∈(0,$\frac{5π}{6}$)可求B,C的值,设AC=2x,则CM=x.由余弦定理可得CM的值,利用三角形面积公式即可得解.

解答 解:∵2asinB=b,由正弦定理可得:2sinAsinB=sinB,sinB≠0,
∴解得:sinA=$\frac{1}{2}$,
∵$\frac{1}{2}$sinB=cos2$\frac{C}{2}$=$\frac{1+cosC}{2}$,可得:sinB=1+cosC≤1,可得:cosC≤0,C为直角或钝角,
∴A,B为锐角,解得:A=$\frac{π}{6}$,B+C=$\frac{5π}{6}$.
∴sinB=1+cosC=1+cos($\frac{5π}{6}$-B)=1-$\frac{\sqrt{3}}{2}$cosB+$\frac{1}{2}$sinB,整理可得:sin(B+$\frac{π}{3}$)=1,
∵B∈(0,$\frac{5π}{6}$),∴(B+$\frac{π}{3}$)∈($\frac{π}{3}$,$\frac{7π}{6}$),
∴B+$\frac{π}{3}$=$\frac{π}{2}$,∴B=$\frac{π}{6}$.
∴C=π-A-B=$\frac{2π}{3}$.
如图所示,设AC=2x,则CM=x.
在△ACM中,由余弦定理可得:AM2=AC2+CM2-2AC•CM•cosC,
∴7=4x2+x2-4x2cos$\frac{2π}{3}$,化为x2=1,解得x=1.
∴S△ABC=$\frac{1}{2}$AC2sin$\frac{2π}{3}$=$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 本题考查了正弦定理、余弦定理的应用、两角和差的正弦公式、倍角公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知三角形ABC中,三边长分别是a,b,c,面积S=a2-(b-c)2,b+c=8,则S的最大值是$\frac{64}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x0为函数f(x)=sinπx的零点,且满足|x0|+|f(x0+$\frac{1}{2}$)|<33,则这样的零点有(  )
A.61个B.63个C.65个D.67个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),动点P从点P0(-1,2)开始沿着与向量$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$相同的方向做匀速直线运动,速度大小为|$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$|;另一动点Q从点Q0(-2,-1)开始沿着与向量3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$相同的方向做匀速直线运动,速度大小为|3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$|,设P、Q在t=0秒时刻分别在P0、Q0处.
(1)经过多长时间|PQ|最小?求出最小值;
(2)经过多长时间后$\overrightarrow{PQ}$⊥$\overrightarrow{{P}_{0}{Q}_{0}}$,求出t值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在△OAB中,已知P为线段AB上一点,$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$.
(1)若$\overrightarrow{BP}$=2$\overrightarrow{PA}$,求x,y的值;
(2)若$\overrightarrow{BP}$=3$\overrightarrow{PA}$,|$\overrightarrow{OA}$|=4,|$\overrightarrow{OB}$|=2,且$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角为60°,求$\overrightarrow{OP}$•$\overrightarrow{AB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=$\frac{1}{2}$x2sinθ+$\sqrt{3}$xcosθ,其中θ∈R为参数,那么f′(1)的最大值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知θ是第二象限角,试判断tan(sinθ)•cot(cosθ)的符号;
(2)若sin(cosθ)•cos(sinθ)<0,则θ为第几象限角?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.构造数组,规则如下:第一组是两个1,即(1,1),第二组是(1,2a,1),第三组是(1,a(1+2a),2a,a(2a+1),1)…,在每一组的相邻两个数组之间插入这两个数的和的a倍得到下一组,其中a∈(0,$\frac{1}{4}$),设第n组有an个数,且这an个数的和为Sn(n∈N*).
(1)求an和Sn
(2)求证:$\frac{{a}_{1}-1}{{S}_{1}}$+$\frac{{a}_{2}-1}{{S}_{2}}$+…+$\frac{{a}_{n}-1}{{S}_{n}}$≥$\frac{n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,四边形ABCD中,AB=1,AD=2,BC=DC,∠DAB=$\frac{π}{3}$,∠DCB=$\frac{π}{2}$,则$\overrightarrow{AC}$•$\overrightarrow{CD}$=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案