精英家教网 > 高中数学 > 题目详情
3.已知双曲线C的中心在坐标原点,F(-2,0)是C的一个焦点,一条渐进线方程为$\sqrt{3}$x-y=0.
(Ⅰ)求双曲线方程;
(Ⅱ)若直线l:y=kx+1与双曲线C有且只有一个公共点,求k的值.

分析 (Ⅰ)设双曲线方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,a>0,b>0,依题意,$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=4}\\{\frac{b}{a}=\sqrt{3}}\end{array}\right.$,解得即可,
(Ⅱ)联立方程组,消元,根据判别式即可求出k的值.

解答 解:(Ⅰ)设双曲线方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,a>0,b>0,
依题意,$\left\{\begin{array}{l}{{a}^{2}+{b}^{2}=4}\\{\frac{b}{a}=\sqrt{3}}\end{array}\right.$,
解得$a=1\;,b=\sqrt{3}$,所以双曲线方程x2-$\frac{{y}^{2}}{3}$=1,
(Ⅱ)联立$\left\{\begin{array}{l}{y=kx+1}\\{3{x}^{2}-{y}^{2}-3=0}\end{array}\right.$得(3-k2)x2-2kx-4=0,
因为直线与双曲线有且只有一个公共点,
所以3-k2=0或△=(-2k)2+16(3-k2)=0,
即k2=4或k2=3,
所以k=±$\sqrt{3}$或k=±2.

点评 本题考查双曲线的方程和性质,主要考查渐近线方程的运用,以及直线和双曲线的位置关系,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.现有一个质地均匀的正四面体骰子,每个面上分别标有数字1、2、3、4,将这个骰子连续投掷两次,朝下一面的数字分别记为a,b,试计算下列事件的概率:
(1)事件A:a=b;
(2)事件B:函数f(x)=$\frac{1}{2}$ax2-bx+1在区间[$\frac{3}{4}$,+∞)上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=|${log_{\frac{1}{2}}}$x|的单调递增区间是(  )
A.$(0,\frac{1}{2}]$B.(1,2]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知抛物线C:y2=4x,过焦点且与坐标轴不平行的直线与该抛物线相交于A、B两点,记线段AB中点为P(x0,y0).
(Ⅰ)若x0=2,求直线AB的斜率;
(Ⅱ)设线段AB的垂直平分线与x轴,y轴分别相交于点D、E.当直线AB的斜率大于$\frac{{\sqrt{3}}}{3}$时,求$\frac{|AB|}{|DE|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,E,F分别是四面体OABC的边OA,BC的中点,M为EF的中点,若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,则下列向量中与$\overrightarrow{OM}$相等的向量是(  )
A.-$\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$B.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$C.$\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$D.-$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$+$\frac{1}{4}$$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过抛物线y2=-4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=-6,则|AB|为(  )
A.8B.10C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知双曲线C的右焦点为F,过F的直线l与双曲线C交于不同两点A、B,且A、B两点间的距离恰好等于焦距,若这样的直线l有且仅有两条,则双曲线C的离心率的取值范围为(1,$\frac{1+\sqrt{17}}{4}$)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别是三个内角A,B,C的对边,设a=2,b=3,c=4.
(Ⅰ)求cosC的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=f'(1)ex-1-f(0)x+$\frac{1}{2}{x^2}(f'(x)是f(x)$的导数,e为自然对数的底数)g(x)=$\frac{1}{2}{x^2}$+ax+b(a∈R,b∈R)
(Ⅰ)求f(x)的解析式及极值;
(Ⅱ)若f(x)≥g(x),求$\frac{b(a+1)}{2}$的最大值.

查看答案和解析>>

同步练习册答案