精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(-3,1),$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为θ,则tanθ等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.-3D.3

分析 首先由向量的数量积公式求出夹角的余弦值,根据夹角范围求出正弦值,最后求正切.

解答 解:由已知得到cosθ=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}=\frac{-9+4}{\sqrt{{3}^{2}+{4}^{2}}\sqrt{(-3)^{2}+{1}^{2}}}$=$\frac{-5}{5\sqrt{10}}=-\frac{\sqrt{10}}{10}$,又θ∈[0,π],所以sinθ=$\frac{3\sqrt{10}}{10}$,
所以tanθ=$\frac{sinθ}{cosθ}$=-3;
故选C.

点评 本题考查了向量的数量积公式的运用求向量的夹角;属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若曲线f(x)=sinx+$\sqrt{3}$cosx的切线的斜率为k,则k的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数$y=\frac{2x+4}{x-2},x∈[0,3]且x≠2$的值域为(-∞,-2]∪[10,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列四个命题:
①函数$y=2sin(2x-\frac{π}{3})$的一条对称轴是x=$\frac{5π}{12}$;
②函数y=tanx的图象关于点($\frac{π}{2}$,0)对称;
③正弦函数在第一象限为增函数
④存在实数α,使sinα+cosα=$\frac{3}{2}$
以上四个命题中正确的有①②(填写正确命题前面的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.cos570°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=5,$\overrightarrow{a}$•$\overrightarrow{b}$=6,则$\overrightarrow{b}$在$\overrightarrow{a}$上的投影为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$sinx=\frac{{\sqrt{3}}}{5}(\frac{π}{2}<x<π)$,则x的值(  )
A.$arcsin\frac{{\sqrt{3}}}{5}$B.arcsin(-$\frac{\sqrt{3}}{5}$)C.π-arcsin$\frac{{\sqrt{3}}}{5}$D.$\frac{π}{2}+arcsin\frac{{\sqrt{3}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-3|-|x+1|.
(1)解不等式f(x)>1;
(2)若f(x)≥|x+a|的解集包含[-2,-1],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某中学对高二甲、乙两个同类班级,进行“加强‘语文阅读理解’训练,对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分以下61~70分71~80分81~90分91~100分
甲班(人数)36111812
乙班(人数)713101010
现规定平均成绩在80分以上(不含80分)的为优秀.
(Ⅰ)试分析估计两个班级的优秀率;
(Ⅱ)由以上统计数据填写下面2×2列联表,并问“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”是否有帮助.
优秀人数非优秀人数合计
甲班
乙班
合计
参考公式及数据:${Χ^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,
P(Χ2≥k00.500.400.250.150.10
k00.4550.7081.3232.0722.706
P(Χ2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案