精英家教网 > 高中数学 > 题目详情
6.若函数f(x)=log${\;}_{\frac{1}{2}}$(-x2+4x+5)在区间(3m-2,m+2)内单调递增,则实数m的取值为(  )
A.[$\frac{4}{3},3$]B.[$\frac{4}{3},2$]C.[$\frac{4}{3},2$)D.[$\frac{4}{3},+∞$)

分析 由对数函数和二次函数的性质易得函数的单调递增区间,只需让(3m-2,m+2)是其子区间即可,由此可得m的不等式组,解不等式组可得.

解答 解:先保证对数有意义-x2+4x+5>0,解得-1<x<5,
又可得二次函数y=-x2+4x+5的对称轴为x=-$\frac{4}{2×(-1)}$=2,
由复合函数单调性可得函数f(x)=log${\;}_{\frac{1}{2}}$(-x2+4x+5)的单调递增区间为(2,5),
要使函数f(x)=log${\;}_{\frac{1}{2}}$(-x2+4x+5)在区间(3m-2,m+2)内单调递增,
只需$\left\{\begin{array}{l}{3m-2≥2}\\{m+2≤5}\\{3m-2<m+2}\end{array}\right.$,解关于m的不等式组得$\frac{4}{3}$≤m<2,
故选:C.

点评 本题考查对数函数的性质,涉及复合函数的单调性和不等式组的解法,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若f(x)=sin(2x+φ)为偶函数,则φ值可能是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C所对的边分别为a,b,c,满足:$\frac{sinB-sinA}{sinC}=\frac{a+c}{a+b}$.
(Ⅰ)求角B;
(Ⅱ)若sinAcosC=$\frac{\sqrt{3}-1}{4}$,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,该几何体的体积为(  )
A.$\frac{16}{3}$B.5+$\frac{π}{3}$C.$\frac{7π}{3}$D.$\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=x2sinx,则函数f(x)在[-π,π]的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A、B、C三点共线,等差数列{an}满足$\overrightarrow{OA}={a}_{4}\overrightarrow{OB}+({a}_{7}+1)\overrightarrow{OC}$,a3-a11+a14=-1.
(Ⅰ)求数列{an}的通项an及前n项和Sn
(Ⅱ)设数列{bn}满足bn=|an|,试求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\frac{1}{co{s}^{2}x}$+$\frac{1}{si{n}^{2}x}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}、{bn},且通项公式分别为an=3n-2,bn=n2,现抽出数列{an}、{bn}中所有相同的项并按从小到大的顺序排列成一个新的数列{cn},则c10=196(填数字).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线方程为(2+m)x+(1-2m)y+4-3m=0.这条直线恒过一定点,这个定点坐标为(  )
A.(-2m,-m-4)B.(5,1)C.(-1,-2)D.(2m,m+4)

查看答案和解析>>

同步练习册答案