精英家教网 > 高中数学 > 题目详情
16.已知直线方程为(2+m)x+(1-2m)y+4-3m=0.这条直线恒过一定点,这个定点坐标为(  )
A.(-2m,-m-4)B.(5,1)C.(-1,-2)D.(2m,m+4)

分析 由直线(2+m)x+(1-2m)y+4-3m=0变形为m(x-2y-3)+(2x+y+4)=0,令$\left\{\begin{array}{l}{x-2y-3=0}\\{2x+y+4=0}\end{array}\right.$,即可求出定点坐标.

解答 解:由直线(2+m)x+(1-2m)y+4-3m=0变形为m(x-2y-3)+(2x+y+4)=0,
令$\left\{\begin{array}{l}{x-2y-3=0}\\{2x+y+4=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$,
∴该直线过定点(-1,-2),
故选:C,

点评 本题考查了直线系过定点问题,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=log${\;}_{\frac{1}{2}}$(-x2+4x+5)在区间(3m-2,m+2)内单调递增,则实数m的取值为(  )
A.[$\frac{4}{3},3$]B.[$\frac{4}{3},2$]C.[$\frac{4}{3},2$)D.[$\frac{4}{3},+∞$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数$f(x)=\left\{\begin{array}{l}{log_x}4,x>0\\{2^{kx-1}},x≤0\end{array}\right.$,若f(2)=f(-2),则k=(  )
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某几何体的三视图及部分数据如图所示,则此几何体的表面积是$3+4\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在区间[-2,2]上任取一个实数,则该数是不等式x2<1的解的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.i为虚数单位,复数$\frac{{3i-{i^{2014}}}}{1-i}$的化简结果为(  )
A.2+iB.1+2iC.-1+2iD.-2+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在正四面体ABCD中,有如下四个命题:①AB⊥CD;②该四面体外接球的半径与内切球半径之比为2:1;③分别取AB,BC,CD,DA的中点E,F,G,H并顺次连结所得四边形是正方形;④三组对棱中点的连线段交于一点并被该点平分.则其中为真命题的序号为①③④.(填上你认为是真命题的所有序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直线l:y=a(x-1)与圆C:(x+1)2+(y+a)2=1交于A、B两点.
(1)若△ABC为正三角形,求a的值;
(2)设P(0,$\sqrt{3}$),Q是圆C上一动点,当点P到直线l的距离最大时,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=cos($\sqrt{3}$x+φ)-$\sqrt{3}$sin($\sqrt{3}$x+φ)为奇函数,则φ可以取的一个值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$-\frac{π}{6}$D.$-\frac{π}{3}$

查看答案和解析>>

同步练习册答案