精英家教网 > 高中数学 > 题目详情
16.若f(x)=sin(2x+φ)为偶函数,则φ值可能是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.π

分析 由条件根据正弦函数、余弦函数的奇偶性以及诱导公式,可得φ=kπ+$\frac{π}{2}$,k∈z,从而得出结论.

解答 解:若f(x)=sin(2x+φ)为偶函数,则φ=kπ+$\frac{π}{2}$,k∈z,∴φ的值可能是$\frac{π}{2}$,
故选:B.

点评 本题主要考查正弦函数、余弦函数的奇偶性以及诱导公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.sin600°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.由抛物线y2=$\frac{x}{5}$,y2=x-1所围成封闭图形的面积为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图,等边三角形ABC的中线AF与中位线DE相交于G,已知△A′ED是△ADE绕DE旋转过程中的一个图形,下列命题中,错误的是(  )
A.异面直线A′E与BD不可能垂直
B.恒有平面A′GF⊥平面BCDE
C.三棱锥A′-EFD的体积有最大值
D.动点A′在平面ABC上的射影在线段AF上

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(cos$\frac{3}{2}$x,sin$\frac{3}{2}$x),$\overrightarrow{b}$=(cos$\frac{x}{2}$,sin$\frac{x}{2}$),且x∈[0,$\frac{2π}{3}$].
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$及|$\overrightarrow{a}$+$\overrightarrow{b}$|;
(2)若f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-2λ|$\overrightarrow{a}$+$\overrightarrow{b}$|的最小值为-$\frac{3}{2}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.经过P(-2,3)作直线交抛物线y2=-8x于A,B两点.
(1)若线段AB被P平分,求AB所在直线方程;
(2)当直线的倾斜角为$\frac{π}{4}$时,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)已知数列{an}的前n项和为Sn,若${S_n}={3^n}+2n+1$,求an
(2)等差数列{an}的前n项和记为Sn,已知a10=30,a20=50,Sn=242,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设a=(x2+y2)(x-y),b=(x2-y2)(x+y),若x<y<0,则a与b的大小关系为a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=log${\;}_{\frac{1}{2}}$(-x2+4x+5)在区间(3m-2,m+2)内单调递增,则实数m的取值为(  )
A.[$\frac{4}{3},3$]B.[$\frac{4}{3},2$]C.[$\frac{4}{3},2$)D.[$\frac{4}{3},+∞$)

查看答案和解析>>

同步练习册答案