精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=2,an+1=
n
n+1
•an,n∈N*,则a10的值为
 
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:把已知数列递推式变形,得到
an+1
an
=
n
n+1
,分别取n=1,2,3,…,9,然后累积求得a10的值.
解答: 解:由an+1=
n
n+1
•an,n∈N*,得
an+1
an
=
n
n+1

a2
a1
=
1
2

a3
a2
=
2
3


a10
a9
=
9
10

又a1=2,
a10=
a1
10
=
2
10
=
1
5

故答案为:
1
5
点评:本题考查了数列递推式,考查了累积法求数列的通项公式,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
a
b
a
=(sinx,cosx),
b
=(cos(x+
π
3
),sin(x+
π
3
)).
(1)求f(
25
6
π)的值;
(2)设α∈(0,π),f(
α
2
)=
2
2
,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2+|x-a|(x∈R,a∈R).
(Ⅰ)当a=2时,求f(x)的单调区间;
(Ⅱ)若f(x)<10对x∈(-1,3)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,|AB|=3,|AC|=4,|BC|=5,O为△ABC的内心,且
AO
AB
BC
,则λ+μ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
的夹角为120°,且|
a
|=4,|
b
|=2,则
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设抛物线y2=4x的焦点为F,定点为O,M是抛物线上的动点,则
|MO|
|MF|
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.
(1)求f(0)的值.
(2)求f(x)的解析式.
(3)已知a∈R,设P:当0<x<
1
2
时,不等式f(x)+3<2x+a恒成立;Q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数.如果满足P成立的a的集合记为A,满足Q成立的a的集合记为B,求A∩∁RB(R为全集).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),
b
=(x,-2),若
a
b
,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:a-4<x<a+4;q:(x-2)(3-x)>0,若¬p是¬q的充分不必要条件,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案