精英家教网 > 高中数学 > 题目详情
在△ABC中,|AB|=3,|AC|=4,|BC|=5,O为△ABC的内心,且
AO
AB
BC
,则λ+μ=
 
考点:平面向量的基本定理及其意义
专题:常规题型,高考数学专题
分析:本题首先由内心的相关知识得出AO用基本向量AB,AC来表示,得出系数;从而最后要求的值.
解答: 解:∵△ABC中,|AB|=3,|AC|=4,|BC|=5,
由题意得:三角形的内切圆的半径为r=
1
2
(3+4-5)=1

AO
=
1
3
AB
+
1
4
AC

=
1
3
AB
+
1
4
(
AB
+
BC
)

=
7
12
AB
+
1
4
BC

∴λ=
7
12
,μ=
1
4

∴则λ+μ是
5
6

故选C.
点评:平面向量基本定理的使用要注意选择适当的基本向量,得出的系数唯一性,在解题过程中要注意向量加法和减法以及数乘的运用,这样对解题就能做到得心应手.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某公司有价值a万元的一条流水线,要提高该流水线的生产能力,就要对其进行技术改造,从而提高产品附加值,改造需要投入,假设附加值y万元与技术改造投入x万元之间的关系满足:
(1)y与a-x和x的乘积成正比;
(2)x=
a
2
时,y=a2
(3)0≤
x
2(a-x)
≤t,其中为常数,且t∈[0,1].
求:(Ⅰ)设y=f(x),求f(x)表达式,并求y=f(x)的定义域;
(Ⅱ)求出附加值y的最大值,并求出此时的技术改造投入.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=xlnx-ax,g(x)=-x2-2,
(Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围;
(Ⅱ)当a=-1时,求函数f(x)在[m,m+3](m>0)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,m+1),向量
b
=(0,2),且(
a
-
b
)⊥
a

(1)求实数m的值;
(2)求向量
a
b
的夹角θ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B是相互独立事件,且P(A)=
1
2
,P(B)=
2
3
,则P(
AB
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式x2-ax-a>0的解集为(-∞,+∞),则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=2,an+1=
n
n+1
•an,n∈N*,则a10的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

解无理方程:
3x+1
-
x+4
=1的解为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,则3sin2α+5sinαcosα-2cos2α=
 

查看答案和解析>>

同步练习册答案