6£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬ÉèµãP£¨x0£¬y0£©ÎªÍÖÔ²¦££º$\frac{x^2}{4}+\frac{y^2}{3}=1$ÉÏÒ»µã£¬¹ýµãPµÄÖ±Ïß${l_1}£º\frac{{{x_0}x}}{4}+\frac{{{y_0}y}}{3}=1$½»Ö±Ïßl2£ºx=4ÓÚµãQ£®
£¨1£©Ö¤Ã÷£ºÖ±Ïßl1ΪÍÖÔ²¦£µÄÇÐÏߣ»
£¨2£©xÖáÉÏÊÇ·ñ´æÔÚ¶¨µãR£¬Ê¹µÃÒÔPQΪֱ¾¶µÄÔ²¹ý¶¨µãR£¿Èô´æÔÚ£¬Çó³öRµÄ×ø±ê£¬Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©½«µãP£¨x0£¬y0£©´úÈëÍÖÔ²¦££º$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬¿ÉµÃy=$\frac{3}{{y}_{0}}$£¨1-$\frac{{x}_{0}x}{4}$£©ÔÙ´úÈëÍÖÔ²¦££¬ÀûÓøùµÄÅбðʽ¡÷=0£¬¼´µÃ½áÂÛ£»
£¨2£©É趨µãR£¨r£¬0£©£¬Í¨¹ý$\overrightarrow{RP}$•$\overrightarrow{RQ}$=0£¬¿ÉµÃr=1£¬¼´µÃ½áÂÛ£®

½â´ð £¨1£©Ö¤Ã÷£º¡ßµãP£¨x0£¬y0£©ÎªÍÖÔ²¦££º$\frac{x^2}{4}+\frac{y^2}{3}=1$ÉÏÒ»µã£¬
¡à$\frac{{x}_{0}x}{4}$+$\frac{{y}_{0}y}{3}$=1£¬¼´y=$\frac{3}{{y}_{0}}$£¨1-$\frac{{x}_{0}x}{4}$£©£¬
´úÈëÍÖÔ²¦££º$\frac{x^2}{4}+\frac{y^2}{3}=1$£¬
ÕûÀí¿ÉµÃ£º£¨$\frac{{{x}_{0}}^{2}}{4}$+$\frac{{{y}_{0}}^{2}}{3}$£©x2-2x0x+4£¨1-$\frac{{{y}_{0}}^{2}}{3}$£©=0£¬
¡ß$\frac{{{x}_{0}}^{2}}{4}$+$\frac{{{y}_{0}}^{2}}{3}$=1£¬¡àx2-2x0x+4£¨1-$\frac{{{y}_{0}}^{2}}{3}$£©=0£¬
¡ß¡÷=£¨-2x0£©2-16£¨1-$\frac{{{y}_{0}}^{2}}{3}$£©=0£¬
¡àÖ±Ïßl1ΪÍÖÔ²¦£µÄÇÐÏߣ»
£¨2£©½áÂÛ£º´æÔÚ¶¨µãR£¨1£¬0£©£¬Ê¹µÃÒÔPQΪֱ¾¶µÄÔ²¹ý¶¨µãR£®
ÀíÓÉÈçÏ£º
ÒÀÌâÒ⣬P£¨x0£¬y0£©£¬Q£¨4£¬$\frac{3£¨1-{x}_{0}£©}{{y}_{0}}$£©£¬
É趨µãR£¨r£¬0£©£¬Ôò$\overrightarrow{RP}$=£¨x0-r£¬y0£©£¬$\overrightarrow{RQ}$=£¨4-r£¬$\frac{3£¨1-{x}_{0}£©}{{y}_{0}}$£©£¬
¡ß$\overrightarrow{RP}$•$\overrightarrow{RQ}$=0£¬¡à£¨x0-r£©£¨4-r£©+y0•$\frac{3£¨1-{x}_{0}£©}{{y}_{0}}$=0£¬
¼´£¨1-r£©x0+£¨r2-4r+3£©=0£¬
¹Ê$\left\{\begin{array}{l}{1-r=0}\\{{r}^{2}-4r+3=0}\end{array}\right.$£¬½âµÃr=1£¬
¡à´æÔÚ¶¨µãR£¨1£¬0£©£¬Ê¹µÃÒÔPQΪֱ¾¶µÄÔ²¹ý¶¨µãR£®

µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®Èçͼ£¬ÔÚÕý·½ÌåABCDÒ»A1B1C1D1ÖУ¬AB=3£¬CE=2EC1£®
£¨¢ñ£©ÈôFÊÇABµÄÖе㣬ÇóÖ¤£»C1F¡ÎÆ½ÃæBDE£»
£¨¢ò£©Çó¶þÃæ½ÇDÒ»BEÒ»CµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®FΪ˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄÓÒ½¹µã£¬µãPÔÚË«ÇúÏßÓÒÖ§ÉÏ£¬¡÷POF£¨OÎª×ø±êÔ­µã£©Âú×ãOF=OP=$\sqrt{5}{£¬_{\;}}$PF=2£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®2C£®$\sqrt{5}$D£®$\sqrt{3}$+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Éè1+3${C}_{n}^{1}$+32${C}_{n}^{2}$+¡­+3n${C}_{n}^{n}$=256£¬ÔònΪ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=x2-4|x|+3£®
£¨1£©ÊÔÖ¤Ã÷º¯Êýf£¨x£©ÊÇżº¯Êý£»
£¨2£©»­³öf£¨x£©µÄͼÏ󣻣¨ÒªÇóÏÈÓÃǦ±Ê»­³ö²Ýͼ£¬ÔÙÓÃÖÐÐÔ±ÊÃèÄ¡£©
£¨3£©Çë¸ù¾ÝͼÏóÖ¸³öº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÓëµ¥µ÷µÝ¼õÇø¼ä£»£¨²»±ØÖ¤Ã÷£©
£¨4£©µ±ÊµÊýkÈ¡²»Í¬µÄֵʱ£¬ÌÖÂÛ¹ØÓÚxµÄ·½³Ìx2-4|x|+3=kµÄʵ¸ùµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Éè·Ç¸ºÊµÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x+y-3{¡Ü}_{\;}0{£¬}_{\;}\\ 2x+y-4{¡Ý}_{\;}0\end{array}\right.$Ôòz=2x+3yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®4B£®8C£®9D£®12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¼ÆË㣺$\frac{\sqrt{1+cos20¡ã}}{2\sqrt{2}sin10¡ã}$-sin10¡ã£¨$\frac{1}{tan5¡ã}$-tan5¡ã£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈçͼABÊÇÔ²OµÄÒ»ÌõÏÒ£¬¹ýµãA×÷Ô²µÄÇÐÏßAD£¬×÷BC¡ÍAC£¬Óë¸ÃÔ²½»ÓÚµãD£¬ÈôAC=2$\sqrt{3}$£¬CD=2£®
£¨1£©ÇóÔ²OµÄ°ë¾¶£»
£¨2£©ÈôµãEΪABÖе㣬ÇóÖ¤O£¬E£¬DÈýµã¹²Ïߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¨a£¾b£¾0£©£¬A£¨2£¬0£©Êdz¤ÖáµÄÒ»¸ö¶Ëµã£¬ÏÒBC¹ýÍÖÔ²µÄÖÐÐÄO£¬ÇÒ$\overrightarrow{AC}$$•\overrightarrow{BC}$=0£¬|$\overrightarrow{OC}-\overrightarrow{OB}|$=2|$\overrightarrow{BC}-\overrightarrow{BA}$|£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÉèP¡¢QΪÍÖÔ²ÉÏÒìÓÚA£¬BÇÒ²»ÖغϵÄÁ½µã£¬ÇÒ¡ÏPCQµÄƽ·ÖÏß×ÜÊÇ´¹Ö±ÓÚxÖᣬÊÇ·ñ´æÔÚʵÊý¦Ë£¬Ê¹µÃ$\overrightarrow{PQ}$=¦Ë$\overrightarrow{AB}$£¬Èô´æÔÚ£¬ÇëÇó³ö¦ËµÄ×î´óÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸