精英家教网 > 高中数学 > 题目详情
14.锐角三角形ABC中,a、b、c分别是三内角A、B、C的对边,设B=2A,则$\frac{b}{a}$的取值范围是($\sqrt{2}$,$\sqrt{3}$).

分析 根据正弦定理可得到$\frac{a}{sinA}=\frac{b}{sinB}$,结合B=2A根据二倍角公式可得$\frac{a}{sinA}=\frac{b}{2sinAcosA}$,整理得到$\frac{b}{a}$=2cosA,再求得A的范围即可得到$\frac{b}{a}$的取值范围.

解答 解:由正弦定理:得$\frac{a}{sinA}=\frac{b}{sinB}$,
∵B=2A,
∴$\frac{a}{sinA}=\frac{b}{2sinAcosA}$,
∴$\frac{b}{a}$=2cosA,
当B为最大角时B<90°,∴A<45°,
当C为最大角时C<90°,∴A>30°,
∴30°<A<45°,
2cos45°<2cosA<2cos30°,
∴$\frac{b}{a}$∈($\sqrt{2}$,$\sqrt{3}$).
故答案为:($\sqrt{2}$,$\sqrt{3}$).

点评 本题主要考查正弦定理和二倍角公式的应用.正弦定理和余弦定理在解三角形中应用比较多,这两个定理和其推论一定要熟练掌握并能够灵活运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设Sn是等差数列的前n项和,已知a3=6,S9=36.
(1)求an和Sn
(2)设bn=p${\;}^{{a}_{n}}$(p为大于1的常数),证明:数列{bn}是等比数列;
(3)在(2)的条件下,设Cn=b1•b2…bn,试求使cn最小时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,正方体ABCD-A′B′C′D′的棱长为2,动点E,F在棱D′C′上.点G是AB的中点,动点P在棱A′A上,若EF=1,D′E=m,AP=n,则三棱锥P-EFG的体积(  )
A.与m,n都有关B.与m,n都无关C.与m有关,与n无关D.与n有关,与m无关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.甲、乙两人玩数字游戏,先由甲在一张卡片上任意写出一个数字,记为a,再由乙猜甲刚才写出的数字,把乙猜出的数字记为b,且a,b∈{1,2,3},若|a-b|≤1,则乙获胜,现甲、乙两人玩一次这个游戏,则乙获胜的概率为(  )
A.$\frac{7}{9}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某超市某种面包进货价为每个4元,实际售价为每个4.5元,若当天不能卖完,就在闭店前以每个3元的价格全部处理,据以往统计日需求量(单位:个)的情况如表:
日需求量x(0,400](400,600](600,800](800,1000]
频率0.20.40.30.1
若某日超市面包进货量为600.
(1)若以日需求量x所在区间的中间值为估计值,根据上表列出当日利润y的分布列;
(2)估计超市当日利润y的均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别是a,b,c,已知C为锐角且$\sqrt{15}$asinA=bsinBsinC,b=2a.
(1)求tanC的值;
(2)若a+c=6,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=$\left\{\begin{array}{l}{2f(x-500),x≥20}\\{\sqrt{|x|}•{∫}_{0}^{\frac{π}{12}}cos(2t)dt,x<20}\end{array}\right.$,则f(2016)的值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)经过点$M(-\sqrt{2},\sqrt{3})$,且离心率等于$\frac{{\sqrt{2}}}{2}$.
(1)求椭圆的方程;
(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点.
①当|CD|=2时,求直线l的方程;
②若λ=$\frac{|AB|}{|CD|}$,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知a,b∈R,则“a>0,b>0”是“a2+b2≥2ab”的(  )
A.既不充分也不要条件B.充分不必要条件
C.必要不充分条件D.充分必要条件

查看答案和解析>>

同步练习册答案