精英家教网 > 高中数学 > 题目详情
12.某幼儿园中班共36个小朋友的身高(单位:厘米)测量结果如下频率
分布直方图所示,该班小朋友牛牛的身高118cm,他所在的身高段共有6个小朋友.

分析 根据频率分布直方图,利用频率和为1,求出身高在115~120cm内的频率与频数即可.

解答 解:根据频率分布直方图,得;
身高在100~105cm和身高在115~120cm内的数据频率相等,
根据频率和为1,得;
身高在115~120cm内的数据频率为
$\frac{1}{2}$[1-($\frac{1}{60}$+$\frac{1}{20}$+$\frac{1}{15}$)×5]=$\frac{1}{6}$,
所以,身高在115~120cm内的频数为
36×$\frac{1}{6}$=6.
故答案为:6.

点评 本题考查了频率分布直方图的应用问题,也考查了频率、频数与样本容量的关系,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设集合A={x∈N|y=ln(2-x)},B={x|x(x-1)≤0},则A∩B=(  )
A.{x|x≥1}B.{x|1≤x<2}C.{1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a为实数,函数f (x)=a•lnx+x2-4x.
(1)是否存在实数a,使得f (x)在x=1处取极值?证明你的结论;
(2)若函数f (x)在[2,3]上存在单调递增区间,求实数a的取值范围;
(3)设g(x)=2alnx+x2-5x-$\frac{1+a}{x}$,若存在x0∈[1,e],使得f (x0)<g(x0)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合 A={x∈R|x-1≥0},B={x∈R||x|≤2},则A∩B=(  )
A.{x∈R|-2≤x≤2}B.{x∈R|-1≤x≤2}C.{x∈R|1≤x≤2}D.{x∈R|-1≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知C,D是圆A:(x+1)2+y2=1与圆B:x2+(y-2)2=4的公共点,则△BCD的面积为(  )
A.$\frac{4}{5}$B.$\frac{8}{5}$C.$\frac{{4\sqrt{5}}}{5}$D.$\frac{{8\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.关于x的不等式(ax+b)(x-2)>0(b>0)的解集为A,记满足(1,2)⊆A的有序实数对(a,b)构成集合N,若向集合M={(a,b)|-1<a<0,0<b<2}所在平面区域内投掷一质点,质点等可能地落在M内任意一点,则该质点恰好落在集合N所在区域内的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知互不相等的正数a,b,c,d,p,q满足a,c,b,d成等差数列,a,p,b,q成等比数列,则(  )
A.c<p,d>qB.c>p,d>qC.c>p,d<qD.c<p,d<q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知{an}的前n项和Sn,an>0且an2+2an=4Sn+3
(1)求{an}的通项公式;
(2)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某同学做了一个如图所示的等腰直角三角形形状的数表,且把奇数和偶数分别依次排在了数表的奇数行和偶数行,若用a(i,j)表示第i行从左数第j个数,如a(4,3)=10,则a(21,6)=(  )
A.219B.211C.209D.213

查看答案和解析>>

同步练习册答案