精英家教网 > 高中数学 > 题目详情
7.已知U=R,集合A={x|-1<x<1},B={x|x2-2x<0},则A∩(∁UB)=(-1,0].

分析 求出集合B中的一元二次不等式的解集,确定出集合B,由全集R,求出集合B的补集,求出集合A与集合B的补集的交集即可

解答 解:由A={x|-1<x<1}=(-1,1),B={x|x2-2x<0}=(0,2),
∴CuB=(-∞,0]∪[2,+∞),
∴A∩∁UB=(-1,0],
故答案为:(-1,0].

点评 此题属于以一元二次不等式的解法,考查了补集及交集的运算,是一道基础题.也是高考中常考的题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.函数y=2sin(ωx+φ)是偶函数,则φ可能等于(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在等比数列{an}中,已知a4=27a3,则$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{4}}{{a}_{2}}$+$\frac{{a}_{6}}{{a}_{3}}$+…+$\frac{{a}_{2n}}{{a}_{n}}$等于(  )
A.$\frac{{3}^{-n}-3}{2}$B.$\frac{{3}^{1-n}-3}{2}$C.$\frac{{3}^{n}-3}{2}$D.$\frac{{3}^{n+1}-3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,-3).若向量$\overrightarrow{c}$满足$\overrightarrow{c}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$),且$\overrightarrow{b}$∥($\overrightarrow{a}$-$\overrightarrow{c}$),则$\overrightarrow{c}$=(  )
A.$(\frac{7}{9},\frac{7}{3})$B.$(-\frac{7}{9},\frac{7}{3})$C.$(\frac{7}{9},-\frac{7}{3})$D.$(-\frac{7}{9},-\frac{7}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.为了迎接2015年12月16日至12月18日在浙江乌镇召开的第二届国际互联网大会乌镇峰会,组委会对报名参服务的1500名加志愿者进行互联网知识测试,从这1500名志愿者中采用随机抽样的方法抽取15人,所得得到成绩如下:57,63,65,68,72,77,78,78,79,80,83,85,88,90,95.
(Ⅰ)作出抽取15人的测试成绩的茎叶图,根据茎叶图估计志愿者的测试成绩分布情况,写出统计结论,以频率为概率,估计这1500志愿者中成绩在90分以上(包含90分)的人数;
(Ⅱ)从抽取的15名志愿者成绩在80分以上(包含80分)志愿者中,随机选3名志愿者参加某项活动,求选取的3人中恰有一人成绩在90分以上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知全集U=R,集合A={x|x<-1或x>4),B={x|-2≤x≤3),那么阴影部分表示的集合为(  )
A.{x|-2≤x<4}B.{x|x≤3或x≥4}C.{x|-2≤x≤一1}D.{x|-1≤x≤3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)定义域为R,则命题p:“函数f(x)为偶函数”是命题q:“?x0∈R,f(x0)=f(-x0)”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.调查表明,市民对城市的居住满意度与该城市环境质量、城市建设、物价与收入的满意度有极强的相关性,现将这三项的满意度指标分别记为x、y、z,并对它们进行量化:0表示不满意,1表示基本满意,2表示满意,再用综合指标ω=x+y+z的值评定居民对城市的居住满意度等级:若ω≥4,则居住满意度为一级;若2≤ω≤3,则居住满意度为二级;若0≤ω≤1,则居住满意度为三级,为了解某城市居民对该城市的居住满意度,研究人员从此城市居民中随机抽取10人进行调查,得到如下结果:
人员编号12345
(x,y,z)(1,1,2)(2,1,1)(2,2,2)(0,1,1)(1,2,1)
人员编号678910
(x,y,z)(1,2,2)(1,1,1)(1,2,2)(1,0,0)(1,1,1)
(Ⅰ)在这10名被调查者中任取两人,求这两人的居住满意度指标z相同的概率;
(Ⅱ)从居住满意度为一级的被调查者中随机抽取一人,其综合指标为m,从居住满意度不是一级的被调查者中任取一人,其综合指标为n,记随机变量ξ=m-n,求随机变量ξ的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四边形ABCD是直角梯形,AB∥CD,∠ADC=∠DAB=90°,CD=2AB,PA⊥平面ABCD,PA=AB=AD,Q是PC的中点.
(1)求证:BQ∥平面PAD;
(2)探究在过BQ且与底面ABCD相交的平面中是否存在一个平面α,把四棱锥P-ABCD截成两部分,使得其中一部分为一个四个面都是直角三角形的四面体,若存在,求平面PBC与平面α所成锐二面角的余弦值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案