精英家教网 > 高中数学 > 题目详情
14.已知x2+ax+b<0的解集为(1,3),则a+b=-1.

分析 根据不等式与对应方程之间的关系,利用根与系数的关系求出a、b的值.

解答 解:x2+ax+b<0的解集为(1,3),
∴方程x2+ax+b=0的实数根为1和3,
由根与系数的关系,得,
$\left\{\begin{array}{l}{a=-(1+3)}\\{b=1×3}\end{array}\right.$,
解得a=-4,b=3;
∴a+b=-1.
故答案为:-1.

点评 本题考查了不等式的解法与应用问题,也考查了根与系数关系的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求值:sin26°+cos236°+sin6°cos36°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定积分(${∫}_{\frac{-π}{3}}^{\frac{π}{3}}$(2x+sinx)dx等于(  )
A.0B.$\frac{π^2}{9}-\frac{1}{2}$C.$\frac{{2{π^2}}}{9}-1$D.$\frac{{2{π^2}}}{9}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直三棱柱的底面是等腰直角三角形,斜边长$\sqrt{2}$,且其外接球的面积是16π,则该三棱柱的侧棱长为(  )
A.$\sqrt{14}$B.2$\sqrt{3}$C.4$\sqrt{6}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a、b、c分别是角A、B、C的对边,若$sinBsinC-cosBcosC=\frac{1}{2}$.
(Ⅰ)求角A;
(Ⅱ)若$a=2,b+c=2\sqrt{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若(1+a)n(a>0)的展开式中所有项系数和为64,且展开式的第三项等于15,则a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}的前n项和Sn=2n-1,那么a4的值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.现有1000件产品,甲产品有10件,乙产品有20件,丙产品有970件,现随机不放回抽取3件产品,恰好甲乙丙各一件的概率是(  )
A.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{{{(C_{1000}^3)}^3}}}$
B.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{{{(C_{1000}^1)}^3}}}$
C.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{C_{1000}^3}}$
D.$\frac{{A_3^3C_{10}^1C_{20}^1C_{970}^1}}{{A_{1000}^3}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2$\sqrt{3}sinxcosx+2{cos^2}$x-1(x∈R).
(1)求函数f(x)的单调递减区间;
(2)若f(x0)=$\frac{6}{5}$,${x_0}∈[{\frac{π}{4},\frac{π}{2}}]$,求cos2x0的值.

查看答案和解析>>

同步练习册答案