精英家教网 > 高中数学 > 题目详情

已知函数
(1)求它的定义域,值域;(2)判定它的奇偶性和周期性;(3)判定它的单调区间及每一区间上的单调性.

(1)的定义域为,值域为
(2)既不是奇函数也不是偶函数
(3)单调增区间为[);单调减区间为().

解析试题分析:解:(1)由
又因为0<
所以的定义域为,值域为
定义域关于原点不对称,故既不是奇函数也不是偶函数;

其中是周期函数,且最小正周期是


,即单调增区间为[);单调减区间为().
考点:三角函数的性质
点评:解决的关键是熟练的运用正弦函数的性质来得到其周期和单调性,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1) 当时, 求函数的单调增区间;
(2)当时,求函数在区间上的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

时,幂函数为减函数,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)若关于的方程有3个不同实根,求实数的取值范围;
(3)已知当恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的最大值为1.
(1)求常数的值;(2)求使成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=lnx-ax+-1.
(1) 当a=1时, 过原点的直线与函数f(x)的图象相切于点P, 求点P的坐标;
(2) 当0<a<时, 求函数f(x)的单调区间;
(3) 当a=时, 设函数g(x)=x2-2bx-, 若对于x1, [0, 1]使f(x1)≥g(x2)成立, 求实数b的取值范围.(e是自然对数的底, e<+1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的一个极值点.
(1)求的单调递增区间;
(2)若当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

理科已知函数,当时,函数取得极大值.
(Ⅰ)求实数的值;(Ⅱ)已知结论:若函数在区间内导数都存在,且,则存在,使得.试用这个结论证明:若,函数,则对任意,都有;(Ⅲ)已知正数满足求证:当时,对任意大于,且互不相等的实数,都有

查看答案和解析>>

同步练习册答案