精英家教网 > 高中数学 > 题目详情
已知a,b,c为正实数.
(I)若ab(a+b)=2,求a+b的最小值;
(Ⅱ)若abc(a+b+c)=1,求(a+b)(b+c)的最小值.
考点:基本不等式
专题:不等式的解法及应用
分析:(I)利用2=ab(a+b)≤(
a+b
2
)2
(a+b),解出即可;
(II)利用(a+b)(b+c)=b(a+b+c)+ac≥2
abc(a+b+c)
,即可得出.
解答: 解:(I)∵2=ab(a+b)≤(
a+b
2
)2
(a+b),
∴a+b≥2,当且仅当a=b=1时取等号,
∴a+b的最小值为2;
(II)∵(a+b)(b+c)=b(a+b+c)+ac≥2
abc(a+b+c)
=2,当且仅当b(a+b+c)=ac时取等号,
∴(a+b)(b+c)的最小值是2.
点评:本题查克拉基本不等式的性质,考查了变形能力,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输入p的值为31,则输出的k的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求和:Sn=1•1+2•2+3•22+…+n•2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=13-2cos(5x+
π
6
),求f(x)的最值及对应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=5,且对任意整数n,总有(an+1+3)(an+3)=4an+4成立,则数列{an}的前2015项的和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:cosA=cosθsinC,cosB=sinθsinC,(C≠kπ,k∈Z)求sin2A+sin2B+sin2C 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(a-b)n=cn0•an•b0-cn1•an-1•b1+cn2•an-2•b2-cn3•an-3•b3…(-1)n•cnn•a0•bn.求cn0-cn1+cn2-cn3…+(-1)ncnn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O是△ABC内一点,且
OA
+3
OB
+3
OC
=
0
,则△ABC的面积与△BOC的面积之比为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:如果函数f(x)在[a,b]上存在x1,x2(a<x1<x2<b),满足f′(x1)=
f(b)-f(a)
b-a
,f(x)=f′(x2)=
f(b)-f(a)
b-a
,则称数x1,x2为[a,b]上的“对望数”,函数f(x)为[a,b]上的“对望函数”.已知函数f(x)=
1
3
x3-x2+m是[0.m]上的“对望函数”,则实数m的取值范围是(  )
A、(1,
3
2
B、(
3
2
,3)
C、(1,2)∪(2,3)
D、(1,
3
2
)∪(
3
2
,3)

查看答案和解析>>

同步练习册答案