精英家教网 > 高中数学 > 题目详情
已知集合A是函数f(x)=log 
1
2
(x-1)的定义域,集合B是函数g(x)=2x,x∈[-1,2]的值域,求集合A,B,A∪B.
考点:函数的值域,并集及其运算,函数的定义域及其求法
专题:函数的性质及应用,集合
分析:首先根据对数函数的真数大于0求出函数的定义域,进一步利用指数函数的单调性求出函数的值域,最后利用集合的交并补运算求出结果.
解答: 解:因为f(x)=log
1
2
(x-1)
,所以x-1>0,
解得:x>1
即A=(1,+∞)
函数g(x)=2x,在x∈R是单调递增函数.
由于x∈[-1,2]
所以:函数g(x)的值域为:
1
2
≤g(x)≤4

即:B=[
1
2
,4]

所以:A∪B=(1,+∞)∪[
1
2
,4]=[
1
2
,+∞)
点评:本题考查的知识要点:对数函数的定义域,指数函数的单调性的应用,集合的交并补运算.属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P(0,5),圆C:x2+y2+4x-12y+24=0,过P点的直线l与圆C相交于A,B两点.

(1)若弦AB的长为4
3
,求直线l的方程
(2)若弦AB的长有最小值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,己知AC=3,∠A=45°,点D满足
CD
=2
DB
,且AD=
13
,则BC的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
2
x2
+bx-lnx,其中a,b∈R.
(Ⅰ)设曲线y=f(x)在点(1,f(1))处的切线方程为y=2x-3,求实数a,b的值;
(Ⅱ)当a≥0时,讨论f(x)在其定义域上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下四组向量中,互相平行的组数为(  )
a
=(2,2,1),
b
=(3,-2,2)②
a
=(8,4,-6),
b
=(4,2,-3)③
a
=(0,-1,1),
b
=(0,3,-3)④
a
=(-3,2,0),
b
=(4,-3,3)
A、1组B、2组C、3组D、4组

查看答案和解析>>

科目:高中数学 来源: 题型:

过点P(2,1)的直线l与x轴、y轴正方向交于点A、B,分别根据以下条件求直线l的方程:
(1)直线l与x轴、y轴围成等腰三角形;
(2)点P是AB的中点;
(3)S△AOB=6(O为坐标原点);
(4)|OA|+|OB|最小(O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:对任意的x∈R,有2x>3x:命题q:存在x∈R,使x3=1-x2,则下列命题中为真命题的是(  )
A、p且qB、非p且q
C、p且非qD、非p且非q

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=3sin(2x-
π
6
)的图象向左平移
π
6
单位得到函数的图象y=f(x),则函数y=f(x)图象的一条对称轴是(  )
A、x=
π
6
B、x=
π
4
C、x=
π
3
D、x=
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)证明:函数f(x)=x+
4
x
在(0,2]上是减函数;
(Ⅱ)已知函数f(x)=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
设常数a∈(1,9),求函数f(x)=x+
a
x
在x∈[1,3]上的最大值和最小值.

查看答案和解析>>

同步练习册答案