精英家教网 > 高中数学 > 题目详情
1.在△ABC中,∠A=60°,AB=3,AC=2.若$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{AE}$=λ$\overrightarrow{AC}$-$\overrightarrow{AB}$(λ∈R),且$\overrightarrow{AD}•\overrightarrow{AE}$=-4,则λ的值为$\frac{3}{11}$.

分析 根据题意画出图形,结合图形,利用$\overrightarrow{AB}$、$\overrightarrow{AC}$表示出$\overrightarrow{AD}$,
再根据平面向量的数量积$\overrightarrow{AD}•\overrightarrow{AE}$列出方程求出λ的值.

解答 解:如图所示,
△ABC中,∠A=60°,AB=3,AC=2,
$\overrightarrow{BD}$=2$\overrightarrow{DC}$,
∴$\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BD}$
=$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{BC}$
=$\overrightarrow{AB}$+$\frac{2}{3}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$,
又$\overrightarrow{AE}$=λ$\overrightarrow{AC}$-$\overrightarrow{AB}$(λ∈R),
∴$\overrightarrow{AD}•\overrightarrow{AE}$=($\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$)•(λ$\overrightarrow{AC}$-$\overrightarrow{AB}$)
=($\frac{1}{3}$λ-$\frac{2}{3}$)$\overrightarrow{AB}$•$\overrightarrow{AC}$-$\frac{1}{3}$${\overrightarrow{AB}}^{2}$+$\frac{2}{3}$λ${\overrightarrow{AC}}^{2}$
=($\frac{1}{3}$λ-$\frac{2}{3}$)×3×2×cos60°-$\frac{1}{3}$×32+$\frac{2}{3}$λ×22=-4,
∴$\frac{11}{3}$λ=1,
解得λ=$\frac{3}{11}$.
故答案为:$\frac{3}{11}$.

点评 本题考查了平面向量的线性运算与数量积运算问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2xlnx-1.
(1)求函数f(x)的最小值;
(2)若不等式f(x)≤3x2+2ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y+3≤0}\\{3x+y+5≤0}\\{x+3≥0}\end{array}\right.$,则z=x+2y的最大值是(  )
A.0B.2C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=(  )
A.{2}B.{1,2,4}C.{1,2,4,5}D.{x∈R|-1≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-x+3,x≤1}\\{x+\frac{2}{x},x>1}\end{array}$,设a∈R,若关于x的不等式f(x)≥|$\frac{x}{2}$+a|在R上恒成立,则a的取值范围是(  )
A.[-$\frac{47}{16}$,2]B.[-$\frac{47}{16}$,$\frac{39}{16}$]C.[-2$\sqrt{3}$,2]D.[-2$\sqrt{3}$,$\frac{39}{16}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知{an}为等差数列,前n项和为Sn(n∈N+),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nb2n-1}的前n项和(n∈N+).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线的方程为(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{x^2}{12}-\frac{y^2}{4}=1$C.$\frac{x^2}{3}-{y^2}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\sqrt{3}$sinx+cosx,0≤x<$\frac{π}{2}$,则f(x)的最大值为(  )
A.1B.2C.$\sqrt{3}$+1D.$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x)的局部对称点.
(Ⅰ)若a,b,c∈R,证明函数f(x)=ax3+bx2+cx-b必有局部对称点;
(Ⅱ)是否存在常数m,使得定义在区间[-1,1]上的函数f(x)=2x+m有局部对称点?若存在,求出m的范围,否则说明理由.

查看答案和解析>>

同步练习册答案