精英家教网 > 高中数学 > 题目详情
11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点在圆x2+y2=1上,短轴长为2.
(1)求椭圆C的方程;
(2)若斜率为k的直线经过点M(2,0),且与椭圆C相交于A,B两点,求出k为何值时,OA⊥OB.

分析 (1)由题意可得焦点为(±1,0),短轴长为2,可得b=c=1,求得a,进而得到椭圆方程;
(2)设A(x1,y1),B(x2,y2),直线AB的方程为:y=k(x-2),代入椭圆方程,消去y,可得x的方程,运用韦达定理和两直线垂直的条件:斜率之积为-1,化简计算即可得到所求k的值.

解答 解:(1)依题意椭圆的两个焦点在圆x2+y2=1上,短轴长为2,
可得b=1,c=1,可得a2=b2+c2=2,
所以椭圆C的方程为$\frac{{x}^{2}}{2}$+y2=1;
(2)设A(x1,y1),B(x2,y2),
直线AB的方程为:y=k(x-2),
由$\left\{\begin{array}{l}{y=k(x-2)}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$消去y得:(1+2k2)x2-8k2x+8k2-2=0,
所以x1+x2=$\frac{8{k}^{2}}{1+2{k}^{2}}$,x1x2=$\frac{8{k}^{2}-2}{1+2{k}^{2}}$,
因为OA⊥OB,所以$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-1,即x1x2+y1y2=0,
而y1y2=k2(x1-2)(x2-2),所以x1x2+k2(x1-2)(x2-2)=0,
即(1+k2)x1x2-2k2(x1+x2)+4k2=0,
所以$\frac{(1+{k}^{2})(8{k}^{2}-2)}{1+2{k}^{2}}$-$\frac{16{k}^{4}}{1+2{k}^{2}}$+4k2=0,
解得:k2=$\frac{1}{5}$,
此时△>0,所以k=±$\frac{\sqrt{5}}{5}$,OA⊥OB.

点评 本题考查椭圆的方程的求法,考查直线方程和椭圆方程联立,运用韦达定理和两直线垂直的条件,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知i为虚数单位,a∈R,若(a2+2a-3)+(a+3)i为纯虚数,则a的值为(  )
A.1B.-3C.-3或1D.3或1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+5,x≤2}\\{lo{g}_{\frac{1}{2}}(x-1)+1,x>2}\end{array}\right.$,若f(a2-3a)>f(2a-6),则实数a的取值范围是(2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.圆x2+y2-2x+4y-20=0截直线5x-12y+c=0的弦长为8,
(1)求c的值;
(2)求直线y=x-11上的点到圆上点的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某几何体的三视图如图,则该几何体的体积为$\frac{π}{3}$,表面积为$2+\frac{1+\sqrt{5}}{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.△ABC中,角A,B,C的对边分别为a,b,c,且2bcosC+c=2a.
(Ⅰ)求角B的大小;
(Ⅱ)若$cosA=\frac{1}{7}$,求$\frac{c}{a}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点$P(1,-\frac{3}{2})$在椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上,过椭圆C的右焦点F且垂直于椭圆长轴的弦长为3.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若MN是过椭圆C的右焦点F的动弦(非长轴),点T为椭圆C的左顶点,记直线TM,TN的斜率分别为k1,k2.问k1k2是否为定值?若为定值,请求出定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在三棱锥A-BCD中,CD⊥BD,AB=AD,E为BC的中点.
(I)求证:AE⊥BD;
(Ⅱ)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求二面角B-AC-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知抛物线C:x2=4y,点M是曲线C上的动点,点N的坐标是(0,2),以M点为圆心,MN为半径的圆交x轴于A,B两点.
(Ⅰ)当M是坐标原点时,求抛物线C的准线被圆M截得的弦长;
(Ⅱ)当M在抛物线上移动时.
(i)|AB|是否为定值?证明你的结论;
(ii)若$\frac{|AN|}{|BN|}=t$,求t$+\frac{1}{t}$的最大值,并求出此时圆M的方程.

查看答案和解析>>

同步练习册答案