精英家教网 > 高中数学 > 题目详情
4.设数列满足a1=3,(2-an)•an+1=1,则数列{an}的通项公式是an=$\frac{2n-5}{2n-3}$.

分析 通过写出前几项猜测通项公式,然后利用数学归纳法证明即可.

解答 解:∵a1=3,(2-an)•an+1=1,
∴an+1=$\frac{1}{2-{a}_{n}}$,
∴a2=$\frac{1}{2-3}$=-1,a3=$\frac{1}{2-(-1)}$=$\frac{1}{3}$,a4=$\frac{1}{2-\frac{1}{3}}$=$\frac{3}{5}$,

猜想:数列{an}的通项公式an=$\frac{2n-5}{2n-3}$.
下面用数学归纳法证明:
当n=1时,显然成立;
假设当n=k时,有ak=$\frac{2k-5}{2k-3}$,
∵(2-an)•an+1=1,
∴ak+1=$\frac{1}{2-{a}_{k}}$=$\frac{1}{2-\frac{2k-5}{2k-3}}$=$\frac{1}{\frac{2k-1}{2k-3}}$=$\frac{2k-3}{2k-1}$=$\frac{2(k+1)-5}{2(k+1)-3}$,
即当n=k+1时也成立,
故数列{an}的通项公式an=$\frac{2n-5}{2n-3}$.

点评 本题考查求数列的通项,考查数学归纳法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在正三角形ABC中,E、F、P分别是-AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1).将△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2).

(1)求证:A1E⊥平面BEP;
(2)求二面角B一A1P一F的余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∠ABC=60°,AB=2PA,E是线段BC的中点.
(1)求证:PE⊥AD;
(2)求平面PAE与平面PCD所成锐二面角的余弦值;
(3)在线段PD上是否存在一点F,使得CF∥平面PAE,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知x1、x2是函数f(x)=|lnx|-e-x的两个零点,则x1x2所在区间是(  )
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,1)C.(1,2)D.(2,e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知ω>0,0<φ<π,点A($\frac{π}{4}$,0)和点B($\frac{5π}{4}$,0)是函数f(x)=sin(ωx+φ)的图象的两个相邻的对称中心,则φ=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知定义在区间[0,+∞)上的函数y=f(x)满足下列三个条件:
①对任意的x>0,y>0,总有f[x•f(y)]•f(y)=f(x+y)成立;
②f(2)=0;
③当0<x<2时,总有f(x)≠0.
则f(3)+f($\frac{1}{2}$)的值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,a、b、c分别为A、B、C的对边,A<B<C<90°,B=60°,且$\sqrt{(1+cos2A)(1+cos2C)}$=$\frac{\sqrt{3}-1}{2}$
(1)求角A;
(2)若△ABC的外接圆半径为2,求△ABC面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.经过两点Q(1,1),P(4,3)的直线的参数方程,如果应用共线向量的充要条件来求,方程和参数的含义分别是x,y均为λ的一次函数,|λ|即为两向量的长度的比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知椭圆与双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$有共同的焦点,且离心率为$\frac{1}{{\sqrt{5}}}$,则椭圆的标准方程为(  )
A.$\frac{x^2}{20}+\frac{y^2}{25}=1$B.$\frac{x^2}{25}+\frac{y^2}{20}=1$C.$\frac{x^2}{25}+\frac{y^2}{5}=1$D.$\frac{x^2}{5}+\frac{y^2}{25}=1$

查看答案和解析>>

同步练习册答案