精英家教网 > 高中数学 > 题目详情
7.已知圆A:x2+(y+3)2=100,圆A内一定点B(0,3),圆P过B且与圆A内切,如图所示,求圆心P的轨迹方程.

分析 设动圆圆心P,半径为r,利用两圆相切内切,两圆心距和两半径之间的关系列出PA和PB的关系式,正好符合椭圆的定义,利用定义法求轨迹方程即可.

解答 解:∵|PA|+|PB|=10-r+r=10>6=|AB|
∴P的轨迹是以A、B两点为焦点的椭圆,2a=10得a=5,c=3,∴b=4
所以圆心P的轨迹方程为$\frac{x^2}{16}+\frac{y^2}{25}=1$.

点评 本题考查两圆的位置关系的应用和定义法求轨迹方程,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若集合A={x|(k-1)x2+x-k=0}有且仅有两个子集,则实数k的值是1或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0)的一条渐近线为y=$\sqrt{3}$x,则离心率e等于(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.用min{a,b}表示a,b两数中的最小值,若f(x)=min{|x|,|x+t|}的图象关于直线x=-$\frac{3}{2}$对称,则t的值为(  )
A.-3B.3C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在锐角△ABC中,内角A,B,C对边分别为a,b,c,已知$\frac{sinB}{sinA+sinC}$=$\frac{c+b-a}{c+b}$
(1)求角C.
(2)求函数f(A)=$\frac{-2cos2A}{1+tanA}$+1的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i为虚数单位,复数z满足$\frac{z}{z-i}$=i,则z=(  )
A.$\frac{1}{2}+\frac{1}{2}i$B.$\frac{1}{2}-\frac{1}{2}i$C.$-\frac{1}{2}+\frac{1}{2}i$D.$-\frac{1}{2}-\frac{1}{2}i$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}是以t为首项,以2为公差的等差数列,数列{bn}满足2bn=(n+1)an.若对n∈N*都有bn≥b4成立,则实数t的取值范围是[-18,-14].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若实数x∈Z,y∈Z,满足$\left\{\begin{array}{l}{x<2}\\{y≤3}\\{x+y≥1}\end{array}\right.$,则S=2x+y-1的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知等差数列{an}的首项为$\frac{1}{2}$,Sn为数列的前n项和,若S6=2S4,则a10=(  )
A.$\frac{1}{3}$B.$\frac{19}{2}$C.$\frac{5}{2}$D.$\frac{7}{2}$

查看答案和解析>>

同步练习册答案