分析 (Ⅰ)由已知可得b2+c2-a2=bc,由余弦定理可得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,结合范围A∈(0,π),即可解得A的值.
(Ⅱ)由已知及正弦定理即可解得a的值.
解答 解:(Ⅰ)在△ABC中,∵b2+c2=a2+bc,可得:b2+c2-a2=bc,
∴由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴可得:A=$\frac{π}{3}$.
(Ⅱ)∵A=$\frac{π}{3}$,$sinC=\frac{{\sqrt{3}}}{3}$,c=2,
∴由正弦定理可得:a=$\frac{csinA}{sinC}$=$\frac{2×\frac{\sqrt{3}}{2}}{\frac{\sqrt{3}}{3}}$=3.
点评 本题主要考查了余弦定理,正弦定理,余弦函数的图象和性质在解三角形中的应用,属于基础题.
科目:高中数学 来源: 题型:解答题
| 广告支出x(单位:万元) | 1 | 2 | 3 | 4 |
| 销售收入y(单位:万元) | 12 | 28 | 42 | 56 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)<g(x)<h(x) | B. | g(x)<f(x)<h(x) | C. | g(x)<h(x)<f(x) | D. | h(x)<g(x)<f(x) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com