分析 把siny=$\frac{2}{3}$-sinx代入式子化简,使用换元法转化为二次函数的值域.
解答 解:∵sinx+siny=$\frac{2}{3}$,∴siny=$\frac{2}{3}$-sinx,∵-1≤siny≤1,∴-1≤$\frac{2}{3}$-sinx≤1,解得-$\frac{1}{3}$≤sinx≤1.
∴$\frac{1}{6}$+siny-$\frac{1}{2}$cos2x=$\frac{1}{6}$+$\frac{2}{3}$-sinx-$\frac{1}{2}$(1-2sin2x)=sin2x-sinx+$\frac{1}{3}$.
令sinx=t,则-$\frac{1}{3}$≤t≤1,∴$\frac{1}{6}$+siny-$\frac{1}{2}$cos2x=t2-t+$\frac{1}{3}$=(t-$\frac{1}{2}$)2+$\frac{1}{12}$.
∴当t=$\frac{1}{2}$时,$\frac{1}{6}$+siny-$\frac{1}{2}$cos2x取得最小值$\frac{1}{12}$;当t=-$\frac{1}{3}$时,$\frac{1}{6}$+siny-$\frac{1}{2}$cos2x取得最大值$\frac{7}{9}$.
故答案为[$\frac{1}{12}$,$\frac{7}{9}$].
点评 本题考查了三角函数的性质,三角函数恒等变换,换元法,求出sinx的范围是解题关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ](k∈Z) | B. | [$\frac{π}{2}+2kπ$,$\frac{3}{2}$π+2kπ](k∈Z) | ||
| C. | [$\frac{5π}{2}$+6kπ,$\frac{11π}{2}$+6kπ](k∈Z) | D. | [-$\frac{π}{2}$+6kπ,$\frac{5}{2}$π+6kπ](k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | M=N | B. | M?N | C. | M⊆N | D. | M?N |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com